
Vibrations Summary

1. Free Vibrations

1.1 Introduction to Vibrations

Vibrations are often unwanted phenomena in aerospace engineering. When systems start vibrating at the
wrong frequencies, they might fail, which isn’t particulary good. In reality all systems are continuous
systems, meaning that the displacements of parts depend on a lot of factors. To simplify this, the system
is often modeled as a discrete system. Here the system is split up in parts, which are then evaluated
separately.

Two types of vibrations can be distinguished, being free vibrations and forced vibrations. In free vi-
brations no energy is exchanged with the environment, while in forced vibrations there is energy exchange.
First we will have a look at free vibrations. Forced vibrations will be treated in later chapters.

1.2 Stiffness of an Axially Loaded Rod

Let’s consider an axially loaded rod of negligible mass, having a mass attached to its end. We know that
the displacement δ of the mass is given by

δ =
FL

EA
, (1.2.1)

where F is the (tensional) force in the bar, L is the length of the bar, E is the E-modulus and A is the
cross-sectional area. The stiffness k is defined as the force needed to reach unit displacement. In an
equation this is

k =
F

δ
. (1.2.2)

So for our axially loaded rod, we will have

k =
EA

L
. (1.2.3)

We can now model the situation. We do this by replacing the bar by a spring with the stiffness k. This
is shown in figure 1.1.

Figure 1.1: Modeling of an axially loaded rod.
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1.3 Motion of an Axially Loaded Rod

Previously we considered the axially loaded rod and modeled it. Let’s turn to figure 1.1 once more. We
would like to know how the system will move, if it is given a certain initial displacement/velocity.

To find this out, we use Newton’s second law F = ma. The only force acting on the mass is the spring force
Fs (we don’t consider gravity yet). We know that the spring force varies linearly with the displacement
x by the stiffness k. However, if the block moves upward, the spring forces points downward. So there is
a negative relation between the two. In an equation this becomes

Fs = −kx. (1.3.1)

If we combine this with Newton’s second law, we will find that

mẍ = Fs = −kx ⇒ mẍ + kx = 0. (1.3.2)

The solution can be found by solving this differential equation. We will get

x(t) = c1 cos

(√
k

m
t

)
+ c2 sin

(√
k

m
t

)
. (1.3.3)

So the system will start vibrating with a fixed angular frequency. This frequency, called the angular
eigenfrequency, is denoted by

ωn =

√
k

m
. (1.3.4)

From this, the eigenfrequency f and vibration period T can be derived, according to

f =
ωn

2π
=

1
2π

√
k

m
and T =

1
f

=
2π

ωn
= 2π

√
m

k
. (1.3.5)

However, equation 1.3.3 isn’t very useful. Instead, it is more meaningful to use

x(t) = A sin (ωnt + φ) , (1.3.6)

where A is the amplitude (usually taken to be positive) and φ is the phase. Both follow from the boundary
conditions. If we give the mass an initial displacement x0 and an initial velocity v0, then we can find A
and φ. They will be

A =

√
x2

0 +
(

v0

ω0

)2

and φ = tan−1

(
ωnx0

v0

)
. (1.3.7)

1.4 Effects of Gravity

Previously we haven’t considered gravity. What happens if we do? In this case the total force acting on
the mass will be Fs + mg. This would turn the differential equation into

mẍ + kx = mg. (1.4.1)

When solving differential equations, we know we first ought to find the homogeneous solution of the
differential equation

mẍ + kx = 0. (1.4.2)

We already know the solution for this. After we have found the homogeneous solution, we need to find
one particular solution xp(t). Note that the non-homogeneous term mg is just a constant. So the
particular solution is probably constant too. It can then be shown that

xp(t) =
mg

k
. (1.4.3)
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This makes the solution for the differential equation

x(t) = xh(t) + xp(t) = A sin (ωnt + φ) +
mg

k
. (1.4.4)

Note that if the amplitude A is zero, then the mass will just have a constant displacement of mg/k. This
also follows from statics.

In vibrational engineering the homogeneous solution xh(t) is sometimes called the transient solution
xtr(t) and the particular solution xp(t) is also called the steady state solution xss(t).

1.5 Motion of a Laterally Loaded Rod

Of course there are more kinds of vibrations then masses on axially loaded rods. Let’s consider a laterally
loaded rod, as shown in figure 1.2. The rod has an (area) moment of inertia I.

Figure 1.2: Modeling of a laterally loaded rod.

This time the displacement δ, and thus also the stiffness k and natural frequency ωn, are given by

δ =
FL3

3EI
⇒ k =

F

δ
=

3EI

L3
⇒ ωn =

√
k

m
=

√
3EI

mL3
. (1.5.1)

The rest of the problem is similar to what we have previously discussed.

1.6 Rotation of a Torsionally Loaded Rod

Now let’s consider an other case. We have a disk with (mass) moment of inertia J , connected to a rod
with (area) polar moment of inertia Ip, as shown in figure 1.3.

We will be looking at the angular displacement θ. This depends on the moment M that is acting between
the rod and the disk. If this moment is known, then the angular displacement can be found using

θ =
ML

GIp
. (1.6.1)

Now we can define the torsional stiffness as

k = −M

θ
=

GIp

L
. (1.6.2)

Note that the torsional stiffness has as unit Nm, while the normal stiffness has as unit N/m.

3



Figure 1.3: Modeling of a torsionally loaded rod.

Newton’s second law for rotations states that M = Jα = Jθ̈. Combining this with the torsional stiffness
gives us the differential equation

Jθ̈ + kθ = 0. (1.6.3)

We already know the solution to this! It is just

θ(t) = θ̂ sin (ωnt + φ) , (1.6.4)

where ωn =
√

k/J is the angular natural frequency and θ̂ denotes the amplitude of the vibration.

1.7 Other Cases

We have seen axially loaded rods, laterally loaded rods and torsionally loaded rods. There are, however,
infinitely many other types of systems. It is, for example, possible to combine multiple springs in a
system. We won’t be treating all those combinations, of course. If this is the case, the skills of the
engineer come into play.

However, we’re not letting you venture into those problems unguided. When face with a more complicated
system, just follow the following steps:

• Consider the point of which you want to know the motion.
• Express the force/moment at that point as a function of the (angular) displacement.
• Use Newton’s second law to find the differential equation.
• Solve the differential equation to find the equation of motion.

1.8 Using Energy

In a free vibration (without damping), energy is conserved. You can consider two types of energy in a
vibration. These are kinetic energy T and potential energy U . Let’s consider those energies for the
axially/laterally loaded rod. The kinetic energy is given by

T =
1
2
mẋ2. (1.8.1)

The potential energy here consists of spring energy and gravitational energy, and is given by

U =
1
2
kx2 −mgx, (1.8.2)
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A very important rule is the rule of conservation of energy. It states that

T + U = constant = E, (1.8.3)

where E is the vibrational energy. If the mass passes through the equilibrium point, then T is maximal.
If the mass has maximum deflection, then U is maximal.

It all sounds fun, but how can we use this? To use this, we differentiate equation 1.8.3 with respect to
time. What we get is

dT

dt
+

dU

dt
= 0. (1.8.4)

If we work this out for an axially/laterally loaded rod, we will get

ẋ (mẍ + kx−mg) = 0. (1.8.5)

Note that ẋ can’t be zero for all t (or it would be an awfully boring problem). We now remain with

mẍ + kx = mg, (1.8.6)

which is exactly the differential equation we needed to solve the problem.

The method that was just shown is called the energy method. When damping occurs, the energy
method is slightly more complicated. Now the lost energy also needs to be taken into account. We will
not treat this here though.

You may be wondering why we should use energy? Isn’t it easier to just use Newton’s second law? Well,
using Newton’s second law is easier for normal one-dimensional problems. However, using energy when
solving multi-dimensional problems has various advantages. We will consider multi-dimensional problems
in more detail in the latest chapter of this summary.

5



2. Damped Motions

2.1 Introduction to Damping

The free vibrations discussed in the previous chapter don’t stop oscillating. This isn’t very realistic. So
we need to change our model. We therefore apply viscous damping. We assume that there is a force
acting on the mass in a direction opposite to the motion. This force is also proportional to the motion
(fast-moving objects have more friction). So we introduce the damping force

fc = −cẋ(t), (2.1.1)

where the factor c > 0 is the damping coefficient. If we combine this with the previous differential
equation, we now get

mẍ + cẋ + kx = 0. (2.1.2)

To solve this differential equation, we should first solve the characteristic equation

mλ2 + cλ + k = 0 ⇒ λ = − c

2m
±
√

c2 − 4km

2m
. (2.1.3)

The behaviour of the system now depends on the factor c2 − 4km. Different things occur if this factor
is either smaller than zero, equal to zero or bigger than zero. Since this is so important, the critical
damping coefficient ccr is defined such that

c2
cr − 4km = 0 ⇒ ccr = 2

√
km = 2mωn. (2.1.4)

Here ωn is the natural frequency of the undamped system, also called the undamped natural fre-
quency. We can now also define the damping ratio as

ζ =
c

ccr
=

c

2
√

km
=

c

2mωn
. (2.1.5)

Note that since c > 0 also ζ > 0. Using ζ, the characteristic equation can be rewritten as

λ = −ζωn ± ωn

√
ζ2 − 1. (2.1.6)

Three cases can now be distinguished, which will be treated in the coming paragraphs.

2.2 Underdamped Motion

In the underdamped motion the damping ratio ζ is smaller than one. The solutions λ1 and λ2 of the
characteristic equation are now complex conjugates, being

λ1 = −ζωn − ωn

√
1− ζ2i and λ2 = −ζωn + ωn

√
1− ζ2i. (2.2.1)

Before we write down the solution, we first define the damped natural frequency to be

ωd = ωn

√
1− ζ2. (2.2.2)

If we now solve the differential equation, we will find as the general solution

x(t) = Ae−ζωnt sin (ωdt + φ) , (2.2.3)

where A is the initial amplitude. Note that due to damping, the frequency of the vibration has changed.
The values of A and φ depend on the initial position x0 and initial velocity v0 and can be found using

A =

√
x2

0 +
(

v0 + ζωnx0

ωd

)2

and φ = tan−1

(
x0ωd

v0 + ζωnx0

)
. (2.2.4)

The underdamped motion results in an oscillation with a decreasing amplitude.
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2.3 Overdamped Motion

In the overdamped motion the damping ratio ζ is bigger than one. The roots to the characteristic
equation are now two real values, being

λ1 = −ζωn − ωn

√
ζ2 − 1 and λ2 = −ζωn + ωn

√
ζ2 − 1. (2.3.1)

In this case no oscillation occurs. The mass will not even pass the equilibrium position. Instead, it will
only converge to it. Before we see how, we first define

ωc = ωn

√
ζ2 − 1. (2.3.2)

The motion of the mass is now described by

x(t) = e−ζωnt
(
a1e

−ωct + a2e
ωct
)
. (2.3.3)

The constants a1 and a2 once more depend on the initial conditions. They can be found using

a1 =
1
2
x0

(
1− ζωn

ωc

)
− v0

2ωc
and a2 =

1
2
x0

(
1 +

ζωn

ωc

)
+

v0

2ωc
. (2.3.4)

2.4 Critically Damped Motion

In the critically damped motion we have ζ = 1 and thus c = ccr. The roots of the characteristic
equation are now

λ1 = λ2 = −ωn. (2.4.1)

The solution is now given by
x(t) = (a1 + a2t) e−ωnt, (2.4.2)

where the constants a1 and a2 are given by

a1 = x0 and a2 = v0 + ωnx0. (2.4.3)

2.5 Stability

We have, up to now, considered only positive k and c. Of course it is also possible to have a negative
k (the force acts in the direction of the displacement or a negative c (the force acts in the direction of
motion.

If, for a certain motion, x →∞, then the motion is unstable. Otherwise the motion is stable. We will
look at the stability of the systems for various combinations of c and k now.

• k > 0 - This occurs in normal springs. In case of a deflection, the mass is pulled back to the
equilibrium position.

– For c = 0 we are on familiar grounds. The motion is just an undamped vibration. The
amplitude is bounded (x(t) ≤ A for all t) so we have a stable motion. However, x(t) never
converges to zero. So the system is only marginally stable.

– For c > 0 we are dealing with a damped motion. It doesn’t matter whether the system is
underdamped, overdamped or critically damped. In all cases x(t) → 0 as t → ∞, so the
system is asymptotically stable. (How x goes to zero does depend on ζ though, but this is
irrelevant for the stability.)

– If c < 0, then the amplitude of the motion increases unbounded for increasing t. So the motion
is unstable. However, we can distinguish two cases.
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∗ If c2 < 4mk (thus ζ < 1), then there are still oscillations. In this case we have flutter
instability.

∗ For c2 ≥ 4mk (thus ζ ≥ 1) no oscillation occurs. As soon as the mass departs from the
equilibrium, it will never return. Now there is divergent instability.

• When k < 0 the mass gets pushed away from the equilibrium position, independent of the damping
coefficient c. For c > 0 the motion only occurs slower than for c < 0. Since x(t) → ∞ as t → ∞,
the motion is unstable. To be more precise, there is divergent instability, since not a single
oscillation occurs.

2.6 Coulomb Friction

Suppose we have mass, horizontally sliding over a surface, as shown in figure 2.4.

Figure 2.4: Mass connected to a spring, sliding over a horizontal surface.

The force that acts on the mass depends on whether it is moving, and in which direction, according to

fc(ẋ) =


−µN if ẋ > 0

0 if ẋ = 0
µN if ẋ < 0

 = µN


−1 if ẋ > 0
0 if ẋ = 0
1 if ẋ < 0

 = −µNsgn(ẋ), (2.6.1)

where µ is the dynamic friction coefficient and N is the normal force acting on the block. Also sgn(τ)
is the signum function, defined to give 1 when τ > 0, 0 when τ = 0 and −1 if τ < 0. This kind of
damping is called Coulomb damping. The resulting differential equation is

mẍ + µNsgn(ẋ) + kx = 0. (2.6.2)

This is very hard to solve, due to the signum function. It is wiser to examine the problem in steps.
Suppose the mass has no initial velocity (v0 = 0), but only an initial displacement δ0. If the initial
displacement is big enough to overcome the friction force (kδ0 > µN), the block will start sliding. After
π/ωn seconds it will have reached a new maximum deflection δ1. It can be shown that this deflection is

δ1 = δ0 −
2µN

k
. (2.6.3)

If the force is big enough to let the block slide again, it will have another half oscillation of π/ωn seconds,
but its maximum deflection will have decreased again by the same amount. So,

δ2 = δ1 −
2µN

k
. (2.6.4)

This continues until after i half oscillations kδi ≤ µN . The block has been oscillating for iπ/ωn seconds.
But now the oscillation has ended and the block will remain at δi.
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3. Harmonic Excitation

3.1 Introduction to Harmonic Excitation

In the previous chapters, the only force present was the force of the spring. Although we also considered
gravity, this was a constant force and thus not very interesting. What will happen if we cause a time-
dependent external force Fe(t) on the mass? In this case the differential equation for an undamped
motion should be rewritten to

mẍ + kx = Fe(t). (3.1.1)

We can get about any motion, depending on the external force. In reality external forces are often
harmonic. We therefore assume that

Fe(t) = F̂e cos ωt, (3.1.2)

where ω is the angular frequency of the external force. To solve this differential equation, we first
need to find the homogeneous solution. This solution is already known from previous chapters though.
So we focus on the particular solution xp(t). We assume that it can be written as

xp(t) = x̂p cos ωt. (3.1.3)

Inserting this in the differential equation will give

x̂p =
F̂e

m

1
(ω2

n − ω2)
⇒ xp(t) =

F̂e

m

1
(ω2

n − ω2)
cos ωt. (3.1.4)

If we combine this with the general solution to the homogeneous problem, we find that

x(t) =
v0

ωn
sinωnt + x0 cos ωnt +

F̂e

m

1
(ω2

n − ω2)
(cos ωt− cos ωnt) . (3.1.5)

A very important thing can be noticed from this equation. If ω → ωn, then xp(t) → ∞ and thus also
x(t) → ∞. This phenomenon is called resonance and is defined to occur if ω = ωn. It is something
engineers should definitely prevent.

3.2 Resonance

When looking at equation 3.1.5 we can see that it is undefined for ω = ωn. What happens if we force a
system to vibrate at its natural frequency? To find this out, we set ω = ωn. The differential equation
now becomes

ẍ + ω2
nx(t) =

F̂e

m
cos ωnt. (3.2.1)

If we try a solution of the form xp(t) = x̂p cos ωnt, we will only find the equation 0 =
(
F̂e/m

)
cos ωnt.

So there are no solutions of the assumed form. Instead, let’s try to assume that xp(t) = x̂pt sinωnt. We
now find that

x̂p =
F̂e

2mωn
⇒ xp(t) =

F̂e

2mωn
t sinωnt. (3.2.2)

What we get is a vibration in which the amplitude increases linearly with time. So as the time t
increases, also the amplitude of the motion increases. This continues until the system can’t sustain the
large amplitudes anymore and will fail.
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3.3 Beat Phenomenon

When the external force isn’t vibrating at exactly the natural frequency of a system, but only close to it,
also interesting things occur. First let’s define the two variables ∆ω and ω̄ as

∆ω =
ωn − ω

2
and ω̄ =

ωn + ω

2
. (3.3.1)

Let’s once more consider equation 3.1.5. If we have no initial displacement or velocity (x0 = 0 and
v0 = 0), then we can rewrite this equation to

2
F̂e

m

1
(ω2

n − ω2)
sin (∆ωt) sin (ω̄t) = 2

F̂e

m

1
(ω2

n − ω2)
sin
(

2π

T1
t

)
sin
(

2π

T2
t

)
. (3.3.2)

As ω → ωn also ∆ω → 0 and ω̄ → ωn. So it follows that T1 will become very large, while T2 is close to
the natural frequency of the system. Since T1 is so large, we can define the amplitude of the vibration as

A(t) = 2
F̂e

m

1
(ω2

n − ω2)
sin
(

2π

T1
t

)
. (3.3.3)

So we now have a rapid oscillation with a slowly varying amplitude. This phenomenon is called the beat
phenomenon and one variation of the amplitude is called a beat. As the forcing frequency ω goes closer
to the natural frequency ωn, both the amplitude and the period of a beat increase.

3.4 Harmonic Excitation of Damped Systems

Let’s involve damping in our equations. We then get

mẍ + cẋ + kx = F̂e cos ωt ⇔ ẍ + 2ζωnẋ + ω2
nx =

F̂e

m
cos ωt. (3.4.1)

Let’s assume our particular solution can be written as

xp(t) = X cos (ωt− θ) . (3.4.2)

Inserting this in the differential equation, and solving for X and θ, will eventually give

X =
F̂e

m

1√
(ω2

n − ω2)2 + (2ζωnω)2
and θ = arctan

(
2ζωnω

ω2
n − ω2

)
. (3.4.3)

To find the general solution set, add xp(t) up to the solution of the homogeneous equation and use initial
conditions to solve for the coefficients A and φ.

Let’s define the (dimensionless) frequency ratio as

r =
ω

ωn
. (3.4.4)

We can now rewrite X and θ to

X =
F̂e

k

1√
(1− r2)2 + (2ζr)2

and θ = arctan
(

2ζr

1− r2

)
. (3.4.5)

If r → 1 then X goes to a given maximum value. This maximum value strongly depends on the damping
ratio ζ. For large values of ζ, resonance is hardly a problem. However, if ζ is small, resonance can still
occur.
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3.5 Sinusoidal Forcing Functions

We have up to know only considered forcing functions involving a cosine. Of course forcing functions can
also be expressed using a sine. Let’s examine the forcing function

Fe(x) = F̂e sinωt. (3.5.1)

The particular solution to the (damped) differential equation then becomes

xp(t) = X sin (ωt− θ) . (3.5.2)

The variables X and θ are still the same as in equation 3.4.5.

3.6 Base Excitation

Let’s now suppose no external force is acting on the mass. Instead the base on which the spring is
connected, is moving by an amount xb(t), as shown in figure 3.5.

Figure 3.5: Definition of variables in base excitation.

The elongation of the spring is now not given by just x(t), but by x(t) − xb(t). Identically, its velocity
with respect to the ground is now ẋ(t) − ẋb(t). So this makes the differential equation describing the
problem

ẍ + 2ζωnẋ + ω2
nx = 2ζωnẋb(t) + ω2

nxb(t). (3.6.1)

Often the base excitation is harmonic, so we assume that

xb(t) = x̂b sinωbt. (3.6.2)

This makes the differential equation

ẍ + 2ζωnẋ + ω2
nx = 2ζωnωbx̂b cos ωbt + ω2

nx̂b sinωbt. (3.6.3)

We have two nonhomogeneous parts. We can therefore find two separate particular solutions for the
differential equation (one for each part). If we set F̂e/m = 2ζωnωb (or identically F̂e/k = 2ζr), then we
have exactly the same problem as we have seen earlier with the cosine forcing function (equation 3.4.2).
If we, on the other hand, set F̂e/m = ω2

nx̂b (or identically F̂e/k = x̂b), then we have the same problem
as we just saw with the sine forcing function (equation 3.5.2). Add the two solutions up to get the total
particular solution

xp(t) =
2ζrx̂b√

(1− r2)2 + (2ζr)2
cos (ωt− θ) +

x̂b√
(1− r2)2 + (2ζr)2

sin (ωt− θ) . (3.6.4)

The value of θ is still the same as it was in equation 3.4.5.

11



4. General Forced Vibrations

4.1 The Impulse Function

An impulse excitation is a force that is applied for a very short duration ∆t with respect to the vibration
period T = 2π/ωn. It is an example of a shock loading. Such an impulse can be mathematically
represented by using the unit impulse function δ(t) (also called the Dirac delta function), defined
such that

δ(t− τ) = 0 for t 6= τ, (4.1.1)∫ ∞
−∞

δ(t− τ)dt = 1. (4.1.2)

But how does this effect the motion of a system? Let’s suppose we have a system with no initial
displacement and mass, that is given an impulse F̂e at time t = τ . The corresponding differential
equation is

mẍ + cẋ + kx = Feδ(t− τ). (4.1.3)

This impulse will cause the linear momentum of the mass to change by

F̂e = Fe∆t = m ∆v = mvτ . (4.1.4)

So this situation is similar to the case where the object simply has an initial velocity of vτ at time t = τ
(with xτ = 0). If we apply this, for example, to an underdamped system, we would get the equation of
motion

x(t) = F̂eh(t− τ), where h(t) =
1

mωd
e−ζωnt sinωdt. (4.1.5)

The function h(t) is now called the impulse response function.

4.2 The Step Function

Another case of a forcing function is the unit step function u(t) (also called the Heaviside step
function, defined such that

u(t− τ) =

{
0 for t < τ,

1 for t ≥ τ.
(4.2.1)

Let’s consider the underdamped differential equation

mẍ + cẋ + kx = F̂eu(t− τ). (4.2.2)

If x0 = 0 and v0 = 0, it can be shown that

x(t) =
F̂e

k

(
1− 1√

1− ζ2
e−ζωnt cos (ωdt− θ)

)
, (4.2.3)

where θ is given by

θ = arctan

(
ζ√

1− ζ2

)
. (4.2.4)

This solution looks awfully familiar. In fact, it corresponds to a vibration with equilibrium point xe =
F̂e/k and initial displacement x0 = 0.
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4.3 Replacing a Periodic Forcing Function by a Fourier Series

What if we don’t have just an impulse or a step function, but a continuous forcing function Fe(t)? In
this case we can take the force Fe(τ) at time τ for a given moment dτ and replace it by an impulse of
magnitude Fe(τ)dτ . We can then find the impulse response function h(t − τ) for the time τ . If we do
this for all times τ and sum everything up, we will eventually find as particular solution

xp(t) =
∫ t

0

Fe(τ)h(t− τ)dτ =
∫ t

0

Fe(t− τ)h(τ)dτ. (4.3.1)

This integral is called the convolution integral. It is often difficult to evaluate the integral. If we have
a periodic forcing function Fe(t) (with period T and angular frequency ωT = 2π/T ), we can apply a trick
though. We can replace Fe(t) by a Fourier series. To do this, we use

Fe(t) =
a0

2
+
∞∑

n=1

(
an cos

(
n

2π

T
t

)
+ bn sin

(
n

2π

T
t

))
. (4.3.2)

The coefficients a0, an and bn are given by

a0 =
2
T

∫ T

0

Fe(t)dt, (4.3.3)

an =
2
T

∫ T

0

Fe(t) cos
(

n
2π

T
t

)
dt, (4.3.4)

bn =
2
T

∫ T

0

Fe(T ) sin
(

n
2π

T
t

)
dt. (4.3.5)

Now we have a new way to write the forcing function. How we use this will be treated in the next
paragraph.

4.4 Finding the Equation of Motion

When we replace the periodic forcing function Fe(t) by a Fourier Series, we can rewrite the differential
equation to

mẍ + cẋ + kx =
a0

2
+
∞∑

n=1

(an cos (nωT t) + bn sin (nωT t)) . (4.4.1)

We now repeatedly take one element from the right hand side of the equation, solve the equation for that
part, and in the end sum everything up. We will then find our particular solution. In an equation this
becomes

xp(t) = xa0(t) +
∞∑

n=1

(xan
(t) + xbn

(t)) . (4.4.2)

The individual solution are then the solutions of the differential equations

mẍa0 + cẋa0 + kxa0 = a0/2, (4.4.3)
mẍan + cẋan + kxan = an cos (nωT t) , (4.4.4)
mẍbn + cẋbn + kxbn = bn sin (nωT t) . (4.4.5)
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All these equations are equations we have solved before. For completeness’ sake we will give the solutions
once more. They are

xa0 =
a0

2k
, (4.4.6)

xan =
an

m
X cos (nωT t− θn) , (4.4.7)

xbn =
bn

m
X sin (nωT t− θn) . (4.4.8)

The variables X and θn are defined as

X =
1√(

ω2
n − (nωT )2

)2

+ (2ζnωnωT )2
and θn = arctan

(
2ζnωnωT

ω2
n − (nωT )2

)
. (4.4.9)

This is how the particular solution is found. Combine this with the specific solution to the problem to
find the general solution to the differential equation.

4.5 Using the Laplace Transform

When solving the differential equation, the Laplace transform is often a convenient tool. Let’s consider
the differential equation

mẍ + cẋ + kx = Fe(x) ⇔ ẍ + 2ζωnẋ + ω2
nx =

Fe(x)
m

. (4.5.1)

Taking the laplace transform, and solving for X(s), will give

X(s) =
sx0 + v0 + 2ζωnx0

s2 + 2ζωns + ω2
n

+
1
m

ze(s)
s2 + 2ζωns + ω2

n

, (4.5.2)

where L {Fe(t)} = ze(s). Often it occurs that x0 = 0 and v0 = 0. The middle term of the above equation
then disappears. To find x(t), you apply the inverse Laplace transform. When doing this, you often need
to use a Laplace transform table like table 4.1.

Function x(t) = L−1{X(s)} Laplace Transform X(s) = L{x(t)} Condition
e−at 1

s+a

sinωnt a
s2+ω2

n

cos ωnt s
s2+ω2

n

1
s2+2ζωns+ω2

n

1
ωd

e−ζωnt sin (ωdt) Underdamped Motion (ζ < 1)
ω2

n

s
1

s2+2ζωns+ω2
n

1− 1√
1−ζ2

e−ζωnt sin (ωdt + arccos (ζ)) Underdamped Motion (ζ < 1)

e−atx(t) X(s + a)
δ(t− a) e−as

u(t− a)x(t) e−asX(s)

Table 4.1: Often used Laplace transforms.
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5. Multiple-Degree-of-Freedom Systems

5.1 Governing Equations of a Two-Degree-of-Freedom System

In previous chapters we have only looked at systems with one changing variable x. In reality situations
can hardly ever be expressed by just one variable. To investigate multiple-degree-of-freedom systems, we
will first look at two-degree-of-freedom systems. An example of such a system is shown in figure 5.6.

Figure 5.6: An example of a two-degree-of-freedom system.

When drawing the equations of motion for each mass, the general equations of motion can be derived.
These are

m1ẍ1 = −k1x1 + k2 (x2 − x1) , (5.1.1)
m2ẍ2 = −k2 (x2 − x1) . (5.1.2)

(We are not considering damping for multiple-degree-of-freedom systems.) When solving this system,
four boundary conditions are necessary. These are x10 , ẋ10 , x20 and ẋ20 .

However, writing things like this is a bit annoying. It’s better to use vectors and matrices. First let’s
define the position vector x, the velocity vector ẋ and the acceleration vector ẍ as

x =

[
x1

x2

]
, ẋ =

[
ẋ1

ẋ2

]
and ẍ =

[
ẍ1

ẍ2

]
. (5.1.3)

We can also define the mass matrix (also called the inertia matrix) for two-degree-of-freedom cases
as

M =

[
m1 0
0 m2

]
. (5.1.4)

Finally we also need the stiffness matrix. For our example system, this matrix is

K =

[
k1 + k2 −k2

−k2 k2

]
. (5.1.5)

Now we can write the system of differential equations as

M ẍ + Kx = 0. (5.1.6)

Note that both M and K are symmetric matrices (meaning that MT = M and KT = K). M is symmetric
because all non-diagonal terms are simply zero. K is symmetric due to Newton’s third law.

We now want to find the equation of motion x(t) for the system of differential equations. To get it, we
need to solve equation 5.1.6. There are multiple ways to do this. We’ll discuss two ways.
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5.2 First Method to find the Equation of Motion

The first method we will be discussing is usually the simplest method for hand calculation. It is therefore
quite suitable for applying on examinations. Computers, however, don’t prefer this method.

Let’s suppose our solution has the form x(t) = ueiωt. Filling this in into the differential equation will
give (

K − ω2M
)
ueiωt = 0. (5.2.1)

The exponential can’t be zero. Also, if u = 0, we won’t have any motion either. So we need to have ω
such that the matrix

(
K − ω2M

)
is singular (not invertible). In other words, its determinant must be

zero. The characteristic equation then is

det
(
K − ω2M

)
= 0. (5.2.2)

For our two-degree-of-freedom example system, this results in

m1m2ω
4 − (m1k2 + m2k1 + m2k2)ω2 + k1k2 = 0. (5.2.3)

From this equation four values of ω will be found, being ±ω1 and ±ω2. These are the natural frequen-
cies of the system. So although a one-degree-of-freedom has only one natural frequency, a two-degree-
of-freedom system has 2 natural frequencies. Multiple-degree-of-freedom systems have even more natural
frequencies.

The corresponding (nonzero) vectors u1 and u2 can now be found using(
K −Mω2

1

)
u1 = 0 and

(
K −Mω2

2

)
u2 = 0. (5.2.4)

Only the direction of the vectors u can be derived from the above relations. Their magnitudes may be
chosen arbitrarily, although they are often normalized such that ||u|| = 1. The final equation of motion
is then given by

x(t) = A1 sin (ω1t + φ1)u1 + A2 sin (ω2t + φ2)u2. (5.2.5)

The values of A1, φ1, A2 and φ2 now need to be determined from the initial conditions.

5.3 Second Method to find the Equation of Motion

There is another way to find the equation of motion. Before we discuss this method, we first have to
make some definitions. We define the matrix square root M1/2 of M such that

M1/2M1/2 = M ⇒ M1/2 =

[√
m1 0
0

√
m2

]
. (5.3.1)

This matrix also has an inverse
(
M1/2

)−1
= M−1/2. Let’s define the vector q such that

x(t) = M−1/2q(t). (5.3.2)

Let’s assume q = veiωt, with v a constant vector. We can now rewrite equation 5.1.6 to

M−1/2KM−1/2v = K̃v = ω2v, (5.3.3)

where K̃ = M−1/2KM−1/2 is the mass normalized stiffness. If we replace ω2 by λ in the above
equation we have exactly the eigenvalue problem from linear algebra. The solutions for λ are then the
eigenvalues of the matrix K̃ and the corresponding vectors v are the eigenvectors.
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Since K is symmetric, also K̃ is symmetric. All the eigenvalues are therefore real numbers and also the
eigenvectors are real. Once the eigenvalues λ1 and λ2 are known, the natural frequencies ω1 and ω2 can
easily be found using

ω1 =
√

λ1 and ω2 =
√

λ2. (5.3.4)

To find the corresponding vectors u, you can use

u1 = M−1/2v1 and u2 = M−1/2v2 (5.3.5)

The equation of motion is then once more given by

x(t) = A1 sin (ω1t + φ1)u1 + A2 sin (ω2t + φ2)u2. (5.3.6)

5.4 Modal Analysis

We can also find the equation of motion using modal analysis. In the previous paragraph we have found
the eigenvectors v1 and v2 of the matrix K̃. These vectors are orthogonal (unless they correspond to
the same eigenvalue, in which case they should be made orthogonal). If they have also been normalized
(given length 1), then they form an orthonormal set. Now let’s define the matrix of eigenvectors P
to consist of these orthonormal eigenvectors. In an equation this is

P =
[
v1 v2

]
. (5.4.1)

This matrix is an orthogonal matrix (as its columns are orthonormal). Such matrices have the conve-
nient property that PT P = I. Also let’s define the matrix of mode shapes S as

S = M−1/2P. (5.4.2)

Furthermore we define the vector r(t) such that

x(t) = M−1/2q(t) = M−1/2Pr(t) = Sr(t). (5.4.3)

Using all these definitions, we can rewrite the system of differential equations to

r̈(t) + Λr(t) = 0, (5.4.4)

where the matrix Λ is given by

Λ = PT K̃P =

[
ω2

1 0
0 ω2

2

]
. (5.4.5)

So we remain with the differential equations

r̈1 + ω2
1r = 0, (5.4.6)

r̈2 + ω2
2r = 0. (5.4.7)

The differential equations have been decoupled! They don’t depend on each other, and therefore can be
solved using simple methods. The two decoupled equations above are called the modal equations. Also
the coordinate system r(t) is called the modal coordinate system.

To solve the modal equations, we need the initial conditions in the modal coordinate system. Usually we
only know the initial conditions x0 and ẋ0 in the normal coordinate system. We can transform these to
the modal coordinate system using

r0 = S−1x0 and ṙ0 = S−1ẋ0, where S−1 = PT M1/2. (5.4.8)

Now we can solve for r1(t) and r2(t) and thus for r(t). Once we have found r(t) we can find the equation
of motion x(t) using

x(t) = Sr(t). (5.4.9)
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