Chapter 1

Introduction and basic concepts

Newton's second law

$$
\begin{equation*}
F=M \cdot a \tag{N}
\end{equation*}
$$

Weight

Density

$$
\rho=\frac{m}{V} \quad\left(\frac{k g}{m^{3}}\right)
$$

Specific volume

$$
\begin{gathered}
W=m \cdot g \quad(N) \\
1 J=1 N \cdot m
\end{gathered}
$$

$$
y=\frac{V}{m}=\frac{1}{\rho}
$$

Specific weight

$$
\gamma_{s}=\rho \cdot g \quad\left(\frac{N}{m^{3}}\right)
$$

Kelvin to Celcius

$$
T(K)=T\left({ }^{\circ} C\right)+273.15 \rightarrow \Delta T(K)=\Delta T\left({ }^{\circ} C\right)
$$

Rankine to Fahrenheit

$$
\begin{gathered}
T(R)=T\left({ }^{\circ} F\right)+459.67 \rightarrow \Delta T(R)=\Delta T\left({ }^{\circ} F\right) \\
(R)=1.8 T(K) \\
T\left({ }^{\circ} \mathrm{F}\right)=1.8 T\left({ }^{\circ} \mathrm{C}\right)+32 \\
1 \mathrm{~Pa}=1 \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \\
1 \mathrm{bar}=10^{5} \mathrm{~Pa}=0.1 \mathrm{MPa}=100 \mathrm{kPa}
\end{gathered}
$$

Absolute, gage and vacuum pressure

$$
\begin{gathered}
P_{g a g e}=P_{a b s}-P_{a t m} \\
P_{v a c}=P_{a t m}-P_{a b s}
\end{gathered}
$$

The pressure at depth h from the free surface is

$$
P=P_{\text {atm }}+\rho g h \quad \text { or } \quad P_{\text {gage }}=\rho g h
$$

Relation for the variation of pressure with elevation

$$
\begin{gathered}
\frac{d P}{d z}=-\rho g \\
\Delta P=P_{2}-P_{1}=-\int_{1}^{2} \rho g d z
\end{gathered}
$$

The atmospheric pressure is measured by a barometer and is given by

$$
P_{a t m}=\rho g h
$$

Chapter 2

Energy, Energy Transfer and General Energy Analysis

The total energy of a system on a unit mass basis

$$
e=\frac{E}{m} \quad\left(\frac{k J}{k g}\right)
$$

Kinetic Energy

$$
K E=m \frac{V^{2}}{2} \quad(k J)
$$

Kinetic Energy on a unit mass basis

$$
k e=\frac{V^{2}}{2} \quad\left(\frac{k J}{k g}\right)
$$

Potentional Energy

$$
P E=m g z \quad(k J)
$$

Potentional Energy on a unit mass basis

$$
p e=g z \quad\left(\frac{k J}{k g}\right)
$$

Total Energy of a system

$$
E=U+K E+P E=U+m \frac{V^{2}}{2}+m g z
$$

Total Energy of a system on a unit mass basis

$$
e=u+k e+p e=u+\frac{V^{2}}{2}+g z
$$

Mass flow rate

$$
\dot{m}=\rho \dot{V}=\rho A_{c} V_{a v g} \quad\left(\frac{k g}{s}\right)
$$

Energy flow rate

$$
\dot{E}=\dot{m} e \quad\left(\frac{k J}{s} \quad \text { or } \quad k W\right)
$$

Mechanical Energy of a flowing fluid on a unit mass basis

$$
e_{m e c h}=\frac{P}{\rho}+\frac{V^{2}}{2}+g z
$$

Mechanical Energy of a flowing fluid expressed in rate form

$$
\dot{E}_{\text {mech }}=\dot{m} e_{m e c h}=\dot{m}\left(\frac{P}{\rho}+\frac{V^{2}}{2}+g z\right)
$$

Mechanical Energy change of a fluid during incompressible flow

$$
\Delta e_{\text {mech }}=\frac{P_{2}-P_{1}}{\rho}+\frac{V_{2}^{2}-V_{1}^{2}}{2}+g\left(z_{2}-z_{1}\right) \quad\left(\frac{k J}{k g}\right)
$$

And

$$
\begin{equation*}
\Delta \dot{E}_{m e c h}=\dot{m} e_{\text {mech }}=\dot{m}\left(\frac{P_{2}-P_{1}}{\rho}+\frac{V_{2}^{2}-V_{1}^{2}}{2}+g\left(z_{2}-z_{1}\right)\right) \tag{kW}
\end{equation*}
$$

Heat transfer per unit mass of a system

$$
q=\frac{Q}{m} \quad\left(\frac{k J}{k g}\right)
$$

Amount of heat transfer during a process

$$
\begin{equation*}
Q=\int^{t_{2}} \dot{Q} d t \tag{kJ}
\end{equation*}
$$

When Q remains constant

$$
\begin{equation*}
Q=\dot{Q} \Delta t \tag{kJ}
\end{equation*}
$$

Work done per unit mass of a system

$$
w=\frac{W}{m} \quad\left(\frac{k J}{k g}\right)
$$

The total volume change during a process between states 1 and 2

$$
\int_{1}^{2} d V=V_{2}-V_{1}=\Delta V
$$

The total work done during process 1-2

$$
\int_{1}^{2} \delta W=W_{12} \quad(\operatorname{Not} \Delta W)
$$

Electrical work (where N is the amount of coulombs and \boldsymbol{V} is a potentional difference)

$$
W_{e}=\boldsymbol{V} N
$$

Electrical work expressed in rate form (Electrical Power)

$$
\begin{equation*}
\dot{W}_{e}=\boldsymbol{V} I \tag{W}
\end{equation*}
$$

Electrical work done during time interval Δt

$$
W_{e}=\int_{1}^{2} \boldsymbol{V} I d t \quad(k J)
$$

Work done by a constant force

$$
W=F s \quad(k J)
$$

Work done by a not constant force

$$
\begin{equation*}
W=\int_{1}^{2} F d s \tag{kJ}
\end{equation*}
$$

Torque

$$
T=F r \rightarrow F=\frac{T}{r}
$$

This force acts through a distance s, which is related to the radius r by

$$
s=(2 \pi r) n
$$

Shaft Work

$$
\begin{equation*}
W_{s h}=F s=\left(\frac{T}{r}\right)(2 \pi r n)=2 \pi n T \tag{kJ}
\end{equation*}
$$

Power transmitted through the shaft

$$
\begin{equation*}
\dot{W}_{s h}=2 \pi \dot{n} T \tag{kW}
\end{equation*}
$$

Spring Work

$$
\delta W_{\text {spring }}=F d x
$$

Total spring work

$$
\begin{equation*}
W_{\text {spring }}=\frac{1}{2} k\left(x_{2}^{2}-x_{1}^{2}\right) \tag{kJ}
\end{equation*}
$$

Work associated with the expansion or contraction of a solid bar

$$
\begin{equation*}
W_{\text {elastic }}=\int_{1}^{2} F d x=\int_{1}^{2} \sigma_{n} A d x \tag{kJ}
\end{equation*}
$$

Work associated with the stretching of a film (also called surface tension work)

$$
\begin{equation*}
W_{\text {surface }}=\int_{1}^{2} \sigma_{s} A d x \tag{kJ}
\end{equation*}
$$

Energy balance

$$
E_{\text {in }}-E_{\text {out }}=\Delta E_{\text {system }}
$$

The change in the total energy of a system during a process (in the absence of electric, magnetic and surface tension effects)

$$
\Delta E=\Delta U+\Delta K E+\Delta P E
$$

Where

$$
\begin{gathered}
\Delta U=m\left(u_{2}-u_{1}\right) \\
\Delta K E=\frac{1}{2} m\left(V_{2}^{2}-V_{1}^{2}\right) \\
\Delta P E=m g\left(z_{2}-z_{1}\right)
\end{gathered}
$$

Energy balance more explicitly

$$
E_{\text {in }}-E_{\text {out }}=\left(Q_{\text {in }}-Q_{\text {out }}\right)+\left(W_{\text {in }}-W_{\text {out }}\right)+\left(E_{\text {mass }, \text { in }}-E_{\text {mass }, \text { out }}\right)=\Delta E_{\text {system }}
$$

Energy balance for any system undergoing any kind of process

$$
\begin{equation*}
E_{\text {in }}-E_{\text {out }}=\Delta E_{\text {system }} \tag{kJ}
\end{equation*}
$$

Or in the rate form

$$
\begin{equation*}
\dot{E}_{\text {in }}-\dot{E}_{\text {out }}=\frac{d E_{\text {system }}}{d t} \tag{kW}
\end{equation*}
$$

For constant rates, the total quantities during a time interval Δt are related to the quantities per unit time as

$$
\begin{align*}
Q & =\dot{Q} \Delta t & & (k J) \\
W & =\dot{W} \Delta t & & (k J) \\
\Delta E & =\frac{d E}{d t} \Delta t & & (k J)
\end{align*}
$$

Energy balance on a unit mass basis

$$
e_{\text {in }}-e_{\text {out }}=\Delta e_{\text {system }} \quad\left(\frac{k J}{k g}\right)
$$

Energy balance in differential form

$$
\delta E_{\text {in }}-\delta E_{\text {out }}=d E_{\text {system }} \quad \text { or } \quad \delta e_{\text {in }}-\delta e_{\text {out }}=d e_{\text {system }}
$$

The Energy balance for a cycle

$$
W_{\text {net }, \text { out }}=Q_{\text {net }, \text { in }} \quad \text { or } \quad \dot{W}_{\text {net }, \text { out }}=\dot{Q}_{\text {net }, \text { in }}
$$

Performance or efficiency

$$
\text { Performance }=\frac{\text { Desiredout put }}{\text { Requiredinput }}
$$

Combustion efficiency

$$
\eta_{\text {combustion }}=\frac{Q}{H V}=\frac{\text { Amount of heat released during combustion }}{\text { Heating value of the fuel burned }}
$$

Mechanical efficiency

$$
\eta_{\text {mech }}=\frac{E_{\text {mech }, \text { out }}}{E_{\text {mech }, \text { in }}}=1-\frac{E_{\text {mech }, \text { loss }}}{E_{\text {mech,in }}}
$$

Pump efficiency

$$
\eta_{\text {pump }}=\frac{\Delta \dot{E}_{\text {mech }, \text { fluid }}}{\dot{W}_{\text {shaft }, \text { in }}}=\frac{\dot{W}_{\text {pump }, u}}{\dot{W}_{\text {pump }}}
$$

Turbine efficiency

$$
\eta_{\text {turbine }}=\frac{\dot{W}_{\text {shaft }, \text { out }}}{\left|\Delta \dot{E}_{\text {mech }, \text { fluid }}\right|}=\frac{\dot{W}_{\text {turbine }}}{\dot{W}_{\text {turbine }, e}}
$$

Motor efficiency

$$
\eta_{\text {motor }}=\frac{\dot{W}_{\text {shaft }, \text { out }}}{\dot{W}_{\text {elect }, \text { in }}}
$$

Generator efficiency

$$
\eta_{\text {senerator }}=\frac{\dot{W}_{\text {elect,out }}}{\dot{W}_{\text {shaft }, \text { in }}}
$$

Combined efficiency of a pump-motor combination

$$
\eta_{\text {pump-motor }}=\eta_{\text {pump }} \eta_{\text {motor }}=\frac{\dot{W}_{\text {pump }, u}}{\dot{W}_{\text {elect }, \text { in }}}=\frac{\Delta \dot{E}_{\text {mech }, \text { fluid }}}{\dot{W}_{\text {elect }, \text { in }}}
$$

Combined efficiency of a turbine-generator combination

$$
\eta_{\text {turbine-generator }}=\eta_{\text {turbine }} \eta_{\text {generator }}=\frac{\dot{W}_{\text {elect,out }}}{\dot{W}_{\text {turb }, \text { in }}}=\frac{\dot{W}_{\text {elect, out }}}{\left|\Delta \dot{E}_{\text {mech }, \text { fluid }}\right|}
$$

Rate of heat conduction

$$
\dot{Q}_{\text {cond }}=k_{t} A \frac{\Delta T}{\Delta x}
$$

In the limiting case of $\Delta x \rightarrow 0$ (Fouriers law)

$$
\begin{equation*}
\dot{Q}_{\text {cond }}=-k_{t} A \frac{d T}{d x} \tag{W}
\end{equation*}
$$

Rate of heat transfer by convection

$$
\begin{equation*}
\dot{Q}_{c o n v}=h A\left(T_{s}-T_{f}\right) \tag{W}
\end{equation*}
$$

Maximum rate of radiation

$$
\dot{Q}_{e m i t, \max }=\sigma A T_{s}^{4}
$$

Radiation emitted by a real surface

$$
\begin{equation*}
\dot{Q}_{e m i t}=\varepsilon \sigma A T_{s}^{4} \tag{W}
\end{equation*}
$$

Rate at which a surface absorbs radiation

$$
\begin{equation*}
\dot{Q}_{a b s}=\alpha \dot{Q}_{\text {incident }} \tag{W}
\end{equation*}
$$

Net rate of radiation heat transfer

$$
\dot{Q}_{r a d}=\varepsilon \sigma A\left(T_{s}^{4}-T_{s}^{4}\right)
$$

Chapter 3

Properties of Pure Substances

The quality x as the ratio of the mass of vapor to the total mass of the mixture (for saturated mixtures only)

$$
x=\frac{m_{\text {vapor }}}{m_{\text {total }}}
$$

Where

$$
m_{\text {total }}=m_{\text {liquid }}+m_{\text {vapor }}=m_{f}+m_{g}
$$

The total volume in a tank containing a saturated liquid-vapor mixture is

$$
\begin{gathered}
V=V_{f}+V_{g} \\
V=m v \rightarrow m_{t} v_{\text {avg }}=m_{f} v_{f}+m_{g} v_{g} \\
m_{f}=m_{t}-m_{g} \rightarrow m_{t} v_{\text {avg }}=\left(m_{t}-m_{g}\right) v_{f}+m_{g} v_{g}
\end{gathered}
$$

Dividing my m_{t} yields

$$
v_{a v g}=(1-x) v_{f}+x v_{g}
$$

Since $x=m_{g} / m_{t}$. This relation can also be expressed as

$$
v_{a v g}=v_{f}+x v_{f g} \quad\left(\frac{m^{3}}{k g}\right)
$$

Where $v_{f g}=v_{g}-v_{g}$. Solving for quality we obtain

$$
x=\frac{v_{a v g}-v_{f}}{v_{f g}}
$$

The analysis given above can be repeated for internal energy and enthalpy with the following results

$$
\begin{array}{ll}
u_{a v g}=u_{f}+x u_{f g} & \left(\frac{k J}{k g}\right) \\
h_{a v g}=h_{f}+x h_{f g} & \left(\frac{k J}{k g}\right)
\end{array}
$$

All the results are of the same format, and they can be summarized in a single equation as

$$
y_{a v g}=y_{f}+x y_{f g}
$$

Where y is v, u or h.

Ideal-gas Equation of State

$$
P=R\left(\frac{T}{v}\right) \rightarrow P v=R T
$$

The gasconstant R is determinded from

$$
R=\frac{R_{u}}{M} \quad\left(\frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}} \text { or } \frac{\mathrm{kPa} \cdot \mathrm{~m}^{3}}{\mathrm{~kg} \cdot \mathrm{~K}}\right)
$$

Where R_{u} is the universal gas constant The mass of a system

$$
m=M N \quad(k g)
$$

The ideal-gas Equation of State can be written in several different forms

$$
\begin{aligned}
V=m v & \rightarrow P V=m R T \\
m R=(M N) R=N R_{u} & \rightarrow P V=N R_{u} T \\
V=N \bar{v} & \rightarrow P \bar{v}-R_{u} T
\end{aligned}
$$

The properties of an ideal gas at two different states are related to each other by

$$
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}
$$

Compressibility factor

$$
\begin{aligned}
& Z=\frac{P_{v}}{R T} \\
& \text { or } \\
& P v=Z R T
\end{aligned}
$$

Gases behave differently at a given temperature and pressure, but they behave very much the same at temperatures and pressure normalized with respect to their critical temperatures and pressures. The normalization is done as

$$
P_{R}=\frac{P}{P_{c r}} \quad \text { and } \quad T_{R}=\frac{T}{T_{c r}}
$$

Pseudeo-reduced specific volume

$$
v_{R}=\frac{v_{\text {actual }}}{R T_{c r} / P_{c r}}
$$

Van der Waals Equation of State

$$
\left(P+\frac{a}{v^{2}}\right)(v-b)=R T
$$

The determination of the two constants appearing in this equation is based on the observation that the critical isotherm on a $P-v$ diagram has a horizontal inflection point of the cricital point. Thus, the first and the second derivatives of P with respect to v at the critical point must be zero. That is

$$
\left(\frac{\partial P}{\partial v}\right)_{T=T_{c r}=\text { const }}=0 \quad \text { and } \quad\left(\frac{\partial^{2} P}{\partial v^{2}}\right)_{T=T_{c r}=\text { const }}=0
$$

By performing the differentiations and eliminating $v_{c r}$, the constants a and b are determined to be

$$
a=\frac{27 R^{2} T_{c r}^{2}}{64 P_{c r}} \quad \text { and } \quad b=\frac{R T_{c r}}{8 P_{c r}}
$$

Beattie-Bridgeman Equation of State

$$
P=\frac{R_{u} T}{\bar{v}^{2}}\left(1-\frac{c}{\bar{v} T^{3}}\right)(\bar{v}+B)-\frac{A}{\bar{v}^{2}}
$$

where

$$
A=A_{0}\left(1-\frac{a}{\bar{v}}\right) \quad \text { and } \quad B=B_{0}\left(1-\frac{b}{\bar{v}}\right)
$$

Benedict-Webb-Rubin Equation of State

$$
P=\frac{R_{u} T}{\bar{v}}+\left(B_{0} R_{u} T-A_{0}-\frac{C_{0}}{T^{2}}\right) \frac{1}{\bar{v}^{2}}+\frac{b R_{u} T-a}{\bar{v}^{3}}+\frac{a \alpha}{\bar{v}^{6}}+\frac{c}{\bar{v}^{3} T^{2}}\left(1+\frac{\gamma}{\bar{v}^{2}}\right) e^{-\frac{\gamma}{\bar{v}^{2}}}
$$

Virial Equation of State

$$
P=\frac{R T}{v}+\frac{a(T)}{v^{2}}+\frac{b(T)}{v^{3}}+\frac{c(T)}{v^{4}}+\frac{d(T)}{v^{5}}+\cdots
$$

Vapor Pressure

$$
P_{a t m}=P_{a}+P_{v}
$$

Chapter 4

Energy Analysis of Closed Systems

Boundary work

$$
\delta W_{b}=F d s=P A d s=P d v
$$

The total boundary work

$$
W_{b}=\int_{1}^{2} P d V \quad(k J)
$$

The total area under the process curve 1-2

$$
\text { Area }=A=\int_{1}^{2} d A=\int_{1}^{2} p d V
$$

Pressure for a polytropic process

$$
P=C V^{-n}
$$

Work done during a polytropic process

$$
W_{b}=\int_{1}^{2} p d V=\int_{1}^{2} C V_{-n} d V=C \frac{V_{2}^{-n+1}-V_{1}^{-n+1}}{-n+1}=\frac{P_{2} V_{2}-P_{1} V_{1}}{1-n}
$$

Since $C=P_{1} V_{1}^{n}=P_{2} V_{2}^{n}$. For an ideal gas $(P V=m R T)$, this equation can also be written as

$$
W_{b}=\frac{m R\left(T_{2}-T_{1}\right)}{1-n} \quad n \neq 1 \quad(k J)
$$

For the special case of $n=1$ the boundary work becomes

$$
W_{b}=\int_{1}^{2} p d V=\int_{1}^{2} C V^{-1} d V=P V \ln \left(\frac{V_{2}}{V_{1}}\right)
$$

Energy balance for a closed system undergoing a cycle

$$
\left.W_{\text {net }, \text { out }}=Q_{\text {net }, \text { in }} \quad \text { or } \quad \dot{W}_{\text {net }, \text { out }}=\dot{Q}_{\text {net }, \text { in }} \quad \text { (for a cycle }\right)
$$

Various forms of the first-law relation for closed systems

$$
\begin{array}{rc}
\text { General } & Q-W=\Delta E \\
\text { Stationary systems } & Q-W=\Delta U \\
\text { Per unit mass } & q-w=\Delta e \\
\text { Differential form } & \delta q-\delta w=d e
\end{array}
$$

Specific heat at constant volume (= the change in internal energy with temperature at constant volume)

$$
c_{v}=\left(\frac{\delta u}{\delta T}\right)_{v} \quad\left(\frac{k J}{k g \cdot{ }^{\circ} \mathrm{C}} \text { or } \frac{\mathrm{kJ}}{\mathrm{~kg} \cdot{ }^{\circ} \mathrm{K}}\right)
$$

Specific heat at constant pressure (= the change in enthalpy with temperature at constant pressure)

$$
c_{P}=\left(\frac{\delta h}{\delta T}\right)_{P} \quad\left(\frac{k J}{\mathrm{~kg} \cdot{ }^{\circ} \mathrm{C}} \text { or } \frac{\mathrm{kJ}}{\mathrm{~kg} \cdot{ }^{\circ} \mathrm{K}}\right)
$$

Using the definition of enthalpy and the equation of state of an ideal gas, we have

$$
\left.\begin{array}{c}
h=u+P V \\
P v=R T
\end{array}\right\} h=u+R T
$$

The differential changes in the internal energy and enthalpy of an ideal gas

$$
d u=c_{v}(T) d T
$$

and

$$
d h=c_{P}(T)
$$

the change in internal energy or enthalpy for an ideal gas during a process from state 1 to state 2 is determined by integreting these equations

$$
\Delta u=u_{2}-u_{1}=\int_{1}^{2} c_{v}(T) d T
$$

and

$$
\Delta h=h_{2}-h_{1}=\int_{1}^{2} c_{P}(T) d T \quad\left(\frac{k J}{k g}\right)
$$

A special relationship between C_{P} and C_{v} for ideal gasses can be obtained by differentiating the relation $h=r+R T$, which yields

$$
d h=d u+R d T
$$

Replacing $d h$ by $c_{P} d T$ and $d u$ by $c_{\nu} d T$ and dividing the resulting expression by $d T$, we obtain

$$
c_{P}=c_{v}+R \quad\left(\frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}\right)
$$

Specific heat ratio

$$
k=\frac{c_{P}}{c_{v}}
$$

For incompressible substances (solids and liquids)

$$
c_{P}=C_{v}=c
$$

The change in internal energy of incompressible substances between states 1 and states 2 is obtained by

$$
\Delta u=u_{2}-u_{1}=\int_{1}^{2} c(T) d T \cong c_{a v g}\left(T_{2}-T_{1}\right) \quad\left(\frac{k J}{k g}\right)
$$

The change in enthalpy of incompressible substances between states 1 and states 2 is obtained by

$$
\Delta h=\Delta u+v \Delta P \quad\left(\frac{k J}{k g}\right)
$$

Chapter 5

Mass and Energy Analysis of Control Volumes

Conservation of mass principle

$$
m_{\text {in }}-m_{\text {out }}=\Delta m_{\text {system }} \quad \text { and } \quad \dot{m}_{\text {in }}-\dot{m}_{\text {oud }}=\frac{d m_{\text {system }}}{d t}
$$

Mass flow rate

Volume flow rate

$$
\dot{V}=V A=\frac{\dot{m}}{\rho}
$$

The total energy of a flowing fluid

$$
\theta=h+k e+p e=h+\frac{V^{2}}{2}+g z
$$

The general mass and energy balances for any system undergoing any process can be expressed as

$$
\underbrace{E_{\text {in }}-E_{\text {out }}} \quad=\quad \underbrace{\Delta E_{\text {system }}}
$$

Net energy transfer by heat,work, and mass Changes in internal, kinetic, potential, etc., energies
It can also be expressed in the rate form as

$$
\underbrace{\dot{E}_{\text {in }}-\dot{E}_{\text {out }}}_{\text {y transfer by heat,work, and mass }}=\underbrace{\frac{\Delta E_{\text {system }}}{d t}}_{\text {Rate of changes in internal, kinetic, potential, etc., energies }}
$$

Conservation of mass and energy equations for steady-flow processes

$$
\begin{gathered}
\sum_{\text {in }} \dot{m}=\sum_{\text {out }} \dot{m} \\
\dot{Q}-\dot{W}=\sum_{\text {out }} \underbrace{\dot{m}\left(h+\frac{V^{2}}{2}+g z\right)}_{\text {for each exit }}-\sum_{\text {in }}^{\sum_{\text {m }}} \underbrace{\dot{m}\left(h+\frac{V^{2}}{2}+g z\right)}_{\text {for each inlet }}
\end{gathered}
$$

For single-stream (one-inlet-one-exit) sytems they simplify to

$$
\begin{gathered}
\dot{m}_{1}=\dot{m}_{2} \rightarrow \frac{1}{v_{1}} V_{1} A_{1}=\frac{1}{v_{2}} V_{2} A_{2} \\
\dot{Q}-\dot{W}=\dot{m}\left[h_{2}-h_{1}+\frac{V_{2}^{2}-V_{1}^{2}}{2}+g\left(z_{2}-z_{1}\right)\right]
\end{gathered}
$$

When kinetic and potential energy changes associated with the control volume and the fluid streams are negligible, the mass and energy balance relations for a uniform-flow system are expressed as

$$
\begin{gathered}
m_{\text {in }}-m_{\text {out }}=\Delta m_{\text {system }} \\
Q-W=\sum_{\text {out }} m h-\sum_{\text {in }} m h+\left(m_{2} u_{2}-m_{1} u_{1}\right)_{\text {system }}
\end{gathered}
$$

Chapter 6

The Second Law of Thermodynamics

The thermal efficiency of a heat engine

$$
\eta_{t h}=\frac{W_{\text {net }, \text { out }}}{Q_{H}}=1-\frac{Q_{L}}{Q_{H}}
$$

Coefficient of performance

$$
\begin{aligned}
& C O P_{R}=\frac{Q_{L}}{W_{\text {net }, \text { in }}}=\frac{1}{\frac{Q_{H}}{Q_{L}}-1} \\
& C O P_{H P}=\frac{Q_{H}}{W_{\text {net }, \text { in }}}=\frac{1}{1-\frac{Q_{L}}{Q_{H}}}
\end{aligned}
$$

Thermodynamic temperature scale related to the heat transfers between a reversible device and the high- and low-temperature reservoirs

$$
\left(\frac{Q_{H}}{Q_{L}}\right)_{\text {rev }}=\frac{T_{H}}{T_{H}}
$$

Thermal efficiency of a Carnot heat engine, as well as all other reversible heat engines

$$
\eta_{t h, r e v}=1-\frac{T_{L}}{T_{H}}
$$

Coefficient of performance of reversible refrigerators and heat pumps

$$
\begin{aligned}
& C O P_{R, \text { rev }}
\end{aligned}=\frac{1}{\frac{T_{H}}{T_{L}}-1}
$$

Chapter 7

Entropy

Definition of entropy

$$
d S=\left(\frac{d Q}{T}\right)_{i n t, r e v}
$$

For the special case of an internally reversible, isothermal process, this gives

Increase of entropy principle

$$
\Delta S=\frac{Q}{T_{0}}
$$

$$
S_{g e n} \geq 0
$$

The entropy change and isentropic relations for a process with pure substances

$$
\text { Any process: } \quad \Delta s=s_{2}-s_{1}
$$

Isentropic process:

$$
s_{2}=s_{1}
$$

The entropy change and isentropic relations for a process with incompressible substances

$$
\begin{array}{rc}
\text { Any process: } & s_{2}-s_{1}=c_{\text {avg }} \ln \frac{T_{2}}{T_{1}} \\
\text { Isentropic process: } & T_{2}=T_{1}
\end{array}
$$

The entropy change and isentropic relations for a process with ideal gases with constant specific heats (approximate treatment)

$$
\begin{array}{cl}
\text { Any process: } & s_{2}-s_{1}=c_{v, \text { avg }} \ln \frac{T_{2}}{T_{1}}+R \ln \frac{v_{2}}{v_{1}} \\
& s_{2}-s_{1}=c_{P, \text { avg }} \ln \frac{T_{2}}{T_{1}}+R \ln \frac{P_{2}}{P_{1}} \\
\text { Isentropic process: } & \left(\frac{T_{2}}{T_{1}}\right)_{s=\text { constant }}=\left(\frac{v_{1}}{v_{2}}\right)^{k-1} \\
& \left(\frac{T_{2}}{T_{1}}\right)_{s=\text { constant }}=\left(\frac{P_{1}}{P_{2}}\right)^{\frac{k-1}{k}} \\
& \left(\frac{P_{2}}{P_{1}}\right)_{s=\text { constant }}=\left(\frac{v_{1}}{v_{2}}\right)^{k}
\end{array}
$$

The entropy change and isentropic relations for a process with ideal gases with variable specific heats (exact treatment)

$$
\begin{array}{rc}
\text { Any process: } & s_{2}-s_{1}=s_{2}^{\circ}-s_{1}^{\circ}-R \ln \frac{P_{2}}{P_{1}} \\
\text { Isentropic process: } & s_{2}^{\circ}=s_{1}^{\circ}+R \ln \frac{P_{2}}{P_{1}} \\
\left(\frac{P_{2}}{P_{1}}\right)_{s=\text { constant }}=\frac{P_{r 2}}{P_{r 1}} \\
\left(\frac{v_{2}}{v_{1}}\right)_{s=\text { constant }}=\frac{v_{r 2}}{v_{r 1}}
\end{array}
$$

Steady flow work for a reversible process

$$
w_{r e v}=-\int_{1}^{2} v d P-\Delta k e-\Delta p e
$$

For incompressible substances it simplifies to

$$
w_{r e v}=-v\left(P_{2}-P_{1}\right)-\Delta k e-\Delta p e
$$

The reversible work inputs to a compressor compressing an ideal gas from T_{1}, P_{1} to P_{2} in an isentropic, polytropic or isothermal manner

$$
\begin{array}{ll}
\text { Isentropic: } & w_{\text {comp,in }}=\frac{k R\left(T_{2}-T_{1}\right)}{k-1}=\frac{k R T_{1}}{k-1}\left[\left(\frac{P_{2}}{P_{1}}\right)^{\frac{k-1}{k}}-1\right] \\
\text { Polytropic: } & w_{\text {comp, in }}=\frac{n R\left(T_{2}-T_{1}\right)}{n-1}=\frac{n R T_{1}}{n-1}\left[\left(\frac{P_{2}}{P_{1}}\right)^{\frac{n-1}{n}}-1\right] \\
\text { Isothermal: } & \\
\text { comp,in }=R T \ln \frac{P_{2}}{P_{1}}
\end{array}
$$

Isentropic or adiabatic efficiency for turbines, compressors and nozzles

$$
\begin{gathered}
\eta_{T}=\frac{\text { Actual turbine work }}{\text { Isentropic turbine work }}=\frac{w_{a}}{w_{s}} \cong \frac{h_{1}-h_{2 a}}{h_{1}-h_{2 s}} \\
\eta_{C}=\frac{\text { Isentropic compressor work }}{\text { Actual compressor work }}=\frac{w_{s}}{w_{a}} \cong \frac{h_{2 s}-h_{1}}{h_{2 a}-h_{1}} \\
\eta_{N}=\frac{\text { Actual KE at nozzle exit }}{\text { Isentropic KE at nozzle exit }}=\frac{V_{2 a}^{2}}{V_{2 s}^{2}} \cong \frac{h_{1}-h_{2 a}}{h_{1}-h_{2 s}}
\end{gathered}
$$

The entropy balance for any system undergoing any process can be expressed in the general form as

or, in rate form as

$$
\underbrace{\dot{S}_{\text {in }}-\dot{S}_{\text {out }}}_{\text {Rate of net entropy transfer by heat and mass }}+\underbrace{\dot{S}_{\text {gen }}}_{\text {Rate of entropy }}=\underbrace{\frac{d S_{\text {system }}}{d t}}_{\text {Reneration }}
$$

For a general stead-flow process it simplifies to

$$
\dot{S}_{g e n}=\sum \dot{m}_{e} s_{e}-\sum \dot{m}_{i} s_{i}-\sum \frac{\dot{Q}_{k}}{T_{k}}
$$

Chapter 8

Exergy: A Measure of Work Potentional

Not mandatory for the exam

Chapter 9

Gas Power Cycles

Thermal efficiency of the Carnot cycle

$$
\eta_{t h, \text { Carnot }}=1-\frac{T_{L}}{T_{H}}
$$

In reciprocating engines, the compression ratio r and the mean effective pressure $M E P$ are defined as

$$
\begin{gathered}
r=\frac{V_{\max }}{V_{\min }}=\frac{V_{B D C}}{V_{T D C}} \\
M E P=\frac{w_{\text {net }}}{v_{\max }-v_{\min }}
\end{gathered}
$$

The thermal efficiency of the ideal Otto cycle (spark-ignition reciprocating engines) under cold-airstandard assumptions is

$$
\eta_{t h, O t t o}=1-\frac{1}{r^{k-1}}
$$

The thermal efficiency of the ideal Diesel cycle (compression-ignition reciprocating engines) under cold-air-standard assumptions is

$$
\eta_{\text {th,Diesel }}=1-\frac{1}{r^{k-1}}\left[\frac{r_{c}^{k}-1}{k\left(r_{c}-1\right)}\right]
$$

The thermal efficiency of the ideal Brayton cycle (modern gas-turbine engines) under cold-airstandard assumptions is

$$
\eta_{\text {th,Brayton }}=1-\frac{1}{r_{p}^{(k-1) / k}}
$$

The deviation of the actual compressor and the turbine from the idealized isentropic ones can be accurately accounted for by utilizing their isentropic efficiencies, defined as

$$
\eta_{C}=\frac{w_{s}}{w_{a}} \cong \frac{h_{2 s}-h_{1}}{h_{2 a}-h_{1}}
$$

and

$$
\eta_{T}=\frac{w_{a}}{w_{s}} \cong \frac{h_{3}-h_{4 a}}{h_{3}-h_{4 S}}
$$

Where states 1 and 3 are the inlet states, 2 a and 4 a are the actual exit states, and 2 s and 4 s are the isentropic exit states
Effectiveness (the extent to which a regenerator approaches an ideal regenerator)

$$
\varepsilon=\frac{q_{\text {regen }, \text { act }}}{q_{\text {regen }, \text { max }}}
$$

Under cold-air-standard assumptions, the thermal efficiency of an ideal Brayton cycle with regeneration becomes

$$
\eta_{t h, \text { regen }}=1-\left(\frac{T_{1}}{T_{3}}\right)\left(r_{P}\right)^{\frac{k-1}{k}}
$$

The net thrust devoloped by the ideal jet-propulsion cycle

$$
F=\dot{m}\left(V_{\text {exit }}-V_{\text {inlet }}\right)
$$

Propulsive power

$$
\dot{W}_{P}=\dot{m}\left(V_{\text {exit }}-V_{\text {inlet }}\right) V_{\text {aircraft }}
$$

Propulsive efficiency

$$
\eta_{P}=\frac{\text { Propulsive power }}{\text { Energy input rate }}=\frac{\dot{W}_{P}}{\dot{Q}_{i n}}
$$

For an ideal cycle that involves heat transfer only with a source at T_{H} and a sink at T_{L}, the exergy destruction is

$$
x_{\text {dest }}=T_{0}\left(\frac{q_{\text {out }}}{T_{L}}-\frac{q_{\text {in }}}{T_{H}}\right)
$$

