
Chapter 1

Introduction and basic concepts

Newton’s second law
F = M ·a (N)

Weight

W = m ·g (N)

1J = 1N ·m

Density

ρ =
m
V

(
kg
m3

)
Specific volume

v =
V
m

=
1
ρ

Specific weight

γs = ρ ·g
(

N
m3

)
Kelvin to Celcius

T (K) = T (◦C)+273.15→ ∆T (K) = ∆T (◦C)

Rankine to Fahrenheit

T (R) = T (◦F)+459.67→ ∆T (R) = ∆T (◦F)

(R) = 1.8T (K)

T (◦F) = 1.8T (◦C)+32

1 Pa = 1 N
m2

1 bar = 105 Pa = 0.1 MPa = 100 kPa

Absolute, gage and vacuum pressure

Pgage = Pabs−Patm

Pvac = Patm−Pabs
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The pressure at depth h from the free surface is

P = Patm +ρgh or Pgage = ρgh

Relation for the variation of pressure with elevation

dP
dz =−ρg

∆P = P2−P1 =−
2∫
1

ρgdz

The atmospheric pressure is measured by a barometer and is given by

Patm = ρgh



Chapter 2

Energy, Energy Transfer and General Energy
Analysis

The total energy of a system on a unit mass basis

e =
E
m

(
kJ
kg

)
Kinetic Energy

KE = m
V 2

2
(kJ)

Kinetic Energy on a unit mass basis

ke =
V 2

2

(
kJ
kg

)
Potentional Energy

PE = mgz (kJ)

Potentional Energy on a unit mass basis

pe = gz
(

kJ
kg

)
Total Energy of a system

E =U +KE +PE =U +m
V 2

2
+mgz

Total Energy of a system on a unit mass basis

e = u+ ke+ pe = u+
V 2

2
+gz

Mass flow rate

ṁ = ρV̇ = ρAcVavg

(
kg
s

)
Energy flow rate

Ė = ṁe
(

kJ
s

or kW
)
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Mechanical Energy of a flowing fluid on a unit mass basis

emech =
P
ρ
+

V 2

2
+gz

Mechanical Energy of a flowing fluid expressed in rate form

Ėmech = ṁemech = ṁ
(

P
ρ
+

V 2

2
+gz

)
Mechanical Energy change of a fluid during incompressible flow

∆emech =
P2−P1

ρ
+

V 2
2 −V 2

1
2 +g(z2− z1)

(
kJ
kg

)
And

∆Ėmech = ṁemech = ṁ
(

P2−P1
ρ

+
V 2

2 −V 2
1

2 +g(z2− z1)
)

(kW )

Heat transfer per unit mass of a system

q =
Q
m

(
kJ
kg

)
Amount of heat transfer during a process

Q =
t2∫
t1

Q̇dt (kJ)

When Q remains constant

Q = Q̇∆t (kJ)

Work done per unit mass of a system

w =
W
m

(
kJ
kg

)
The total volume change during a process between states 1 and 2

2∫
1

dV =V2−V1 = ∆V

The total work done during process 1-2

2∫
1

δW =W12 (Not ∆W )

Electrical work (where N is the amount of coulombs and VVV is a potentional difference)

We =VVV N



Electrical work expressed in rate form (Electrical Power)

Ẇe =VVV I (W )

Electrical work done during time interval ∆t

We =

2∫
1

VVV Idt (kJ)

Work done by a constant force
W = Fs (kJ)

Work done by a not constant force

W =

2∫
1

Fds (kJ)

Torque

T = Fr→ F =
T
r

This force acts through a distance s, which is related to the radius r by

s = (2πr)n

Shaft Work

Wsh = Fs =
(

T
r

)
(2πrn) = 2πnT (kJ)

Power transmitted through the shaft

Ẇsh = 2π ṅT (kW )

Spring Work
δWspring = Fdx

Total spring work

Wspring =
1
2

k(x2
2− x2

1) (kJ)

Work associated with the expansion or contraction of a solid bar

Welastic =

2∫
1

Fdx =
2∫

1

σnAdx (kJ)

Work associated with the stretching of a film (also called surface tension work)

Wsur f ace =

2∫
1

σsAdx (kJ)



Energy balance
Ein−Eout = ∆Esystem

The change in the total energy of a system during a process (in the absence of electric, magnetic and
surface tension effects)

∆E = ∆U +∆KE +∆PE

Where

∆U = m(u2−u1)

∆KE = 1
2 m(V 2

2 −V 2
1 )

∆PE = mg(z2− z1)

Energy balance more explicitly

Ein−Eout = (Qin−Qout)+(Win−Wout)+(Emass,in−Emass,out) = ∆Esystem

Energy balance for any system undergoing any kind of process

Ein−Eout = ∆Esystem (kJ)

Or in the rate form

Ėin− Ėout =
dEsystem

dt (kW )

For constant rates, the total quantities during a time interval ∆t are related to the quantities per unit
time as

Q = Q̇∆t (kJ)

W = Ẇ∆t (kJ)

∆E = dE
dt ∆t (kJ)

Energy balance on a unit mass basis

ein− eout = ∆esystem

(
kJ
kg

)
Energy balance in differential form

δEin−δEout = dEsystem or δein−δeout = desystem

The Energy balance for a cycle

Wnet,out = Qnet,in or Ẇnet,out = Q̇net,in

Performance or efficiency

Per f ormance =
Desiredout put
Requiredinput

Combustion efficiency

ηcombustion =
Q

HV
=

Amount of heat released during combustion
Heating value of the fuel burned



Mechanical efficiency

ηmech =
Emech,out

Emech,in
= 1−

Emech,loss

Emech,in

Pump efficiency

ηpump =
∆Ėmech, f luid

Ẇsha f t,in
=

Ẇpump,u

Ẇpump

Turbine efficiency

ηturbine =
Ẇsha f t,out

|∆Ėmech, f luid |
=

Ẇturbine

Ẇturbine,e

Motor efficiency

ηmotor =
Ẇsha f t,out

Ẇelect,in

Generator efficiency

ηgenerator =
Ẇelect,out

Ẇsha f t,in

Combined efficiency of a pump-motor combination

ηpump−motor = ηpumpηmotor =
Ẇpump,u

Ẇelect,in
=

∆Ėmech, f luid

Ẇelect,in

Combined efficiency of a turbine-generator combination

ηturbine−generator = ηturbineηgenerator =
Ẇelect,out

Ẇturb,in
=

Ẇelect,out

|∆Ėmech, f luid |

Rate of heat conduction
Q̇cond = ktA

∆T
∆x

In the limiting case of ∆x→ 0 (Fouriers law)

Q̇cond =−ktA
dT
dx

(W )

Rate of heat transfer by convection

Q̇conv = hA(Ts−Tf ) (W )

Maximum rate of radiation
Q̇emit,max = σAT 4

s

Radiation emitted by a real surface

Q̇emit = εσAT 4
s (W )

Rate at which a surface absorbs radiation

Q̇abs = αQ̇incident (W )



Net rate of radiation heat transfer

Q̇rad = εσA(T 4
s −T 4

s ) (W )



Chapter 3

Properties of Pure Substances

The quality x as the ratio of the mass of vapor to the total mass of the mixture (for saturated mixtures
only)

x = mvapor
mtotal

Where

mtotal = mliquid +mvapor = m f +mg

The total volume in a tank containing a saturated liquid-vapor mixture is

V =Vf +Vg

V = mv→ mtvavg = m f v f +mgvg

m f = mt −mg→ mtvavg = (mt −mg)v f +mgvg

Dividing my mt yields

vavg = (1− x)v f + xvg

Since x = mg/mt . This relation can also be expressed as

vavg = v f + xv f g

(
m3

kg

)
Where v f g = vg− vg. Solving for quality we obtain

x =
vavg− v f

v f g

The analysis given above can be repeated for internal energy and enthalpy with the following results

uavg = u f + xu f g

(
kJ
kg

)
havg = h f + xh f g

(
kJ
kg

)
All the results are of the same format, and they can be summarized in a single equation as

yavg = y f + xy f g

Where y is v, u or h.
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Ideal-gas Equation of State

P = R
(

T
v

)
→ Pv = RT

The gasconstant R is determinded from

R =
Ru

M

(
kJ

kg ·K
or

kPa ·m3

kg ·K

)
Where Ru is the universal gas constant The mass of a system

m = MN (kg)

The ideal-gas Equation of State can be written in several different forms

V = mv → PV = mRT

mR = (MN)R = NRu → PV = NRuT

V = Nv̄ → Pv̄−RuT

The properties of an ideal gas at two different states are related to each other by

P1V1

T1
=

P2V2

T2

Compressibility factor

Z = Pv
RT

or

Pv = ZRT

Gases behave differently at a given temperature and pressure, but they behave very much the same at
temperatures and pressure normalized with respect to their critical temperatures and pressures. The
normalization is done as

PR =
P

Pcr
and TR =

T
Tcr

Pseudeo-reduced specific volume
vR =

vactual

RTcr/Pcr

Van der Waals Equation of State (
P+

a
v2

)
(v−b) = RT

The determination of the two constants appearing in this equation is based on the observation that
the critical isotherm on a P− v diagram has a horizontal inflection point of the cricital point. Thus,
the first and the second derivatives of P with respect to v at the critical point must be zero. That is(

∂P
∂v

)
T=Tcr=const

= 0 and
(

∂ 2P
∂v2

)
T=Tcr=const

= 0



By performing the differentiations and eliminating vcr, the constants a and b are determined to be

a =
27R2T 2

cr

64Pcr
and b =

RTcr

8Pcr

Beattie-Bridgeman Equation of State

P = RuT
v̄2

(
1− c

v̄T 3

)
(v̄+B)− A

v̄2

where

A = A0
(
1− a

v̄

)
and B = B0

(
1− b

v̄

)
Benedict-Webb-Rubin Equation of State

P =
RuT

v̄
+

(
B0RuT −A0−

C0

T 2

)
1
v̄2 +

bRuT −a
v̄3 +

aα

v̄6 +
c

v̄3T 2

(
1+

γ

v̄2

)
e−

γ

v̄2

Virial Equation of State

P =
RT
v

+
a(T )

v2 +
b(T )

v3 +
c(T )

v4 +
d(T )

v5 + · · ·

Vapor Pressure
Patm = Pa +Pv



Chapter 4

Energy Analysis of Closed Systems

Boundary work
δWb = Fds = PAds = Pdv

The total boundary work

Wb =

2∫
1

PdV (kJ)

The total area under the process curve 1-2

Area = A =

2∫
1

dA =

2∫
1

pdV

Pressure for a polytropic process
P =CV−n

Work done during a polytropic process

Wb =

2∫
1

pdV =

2∫
1

CV−ndV =C
V−n+1

2 −V−n+1
1

−n+1
=

P2V2−P1V1

1−n

Since C = P1V n
1 = P2V n

2 . For an ideal gas (PV = mRT ), this equation can also be written as

Wb =
mR(T2−T1)

1−n
n 6= 1 (kJ)

For the special case of n = 1 the boundary work becomes

Wb =

2∫
1

pdV =

2∫
1

CV−1dV = PV ln
(

V2

V1

)

Energy balance for a closed system undergoing a cycle

Wnet,out = Qnet,in or Ẇnet,out = Q̇net,in (for a cycle)
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Various forms of the first-law relation for closed systems

General Q−W = ∆E

Stationary systems Q−W = ∆U

Per unit mass q−w = ∆e

Differential form δq−δw = de

Specific heat at constant volume (= the change in internal energy with temperature at constant
volume)

cv =

(
δu
δT

)
v

(
kJ

kg · ◦C
or

kJ
kg · ◦K

)
Specific heat at constant pressure (= the change in enthalpy with temperature at constant pressure)

cP =

(
δh
δT

)
P

(
kJ

kg · ◦C
or

kJ
kg · ◦K

)
Using the definition of enthalpy and the equation of state of an ideal gas, we have

h = u+PV
Pv = RT

}
h = u+RT

The differential changes in the internal energy and enthalpy of an ideal gas

du = cv(T )dT

and

dh = cP(T )

the change in internal energy or enthalpy for an ideal gas during a process from state 1 to state 2 is
determined by integreting these equations

∆u = u2−u1 =
2∫
1

cv(T )dT
(

kJ
kg

)
and

∆h = h2−h1 =
2∫
1

cP(T )dT
(

kJ
kg

)
A special relationship between CP and Cv for ideal gasses can be obtained by differentiating the
relation h = r+RT , which yields

dh = du+RdT

Replacing dh by cPdT and du by cvdT and dividing the resulting expression by dT , we obtain

cP = cv +R
(

kJ
kg ·K

)
Specific heat ratio

k =
cP

cv



For incompressible substances (solids and liquids)

cP =Cv = c

The change in internal energy of incompressible substances between states 1 and states 2 is obtained
by

∆u = u2−u1 =

2∫
1

c(T )dT ∼= cavg(T2−T1)

(
kJ
kg

)
The change in enthalpy of incompressible substances between states 1 and states 2 is obtained by

∆h = ∆u+ v∆P
(

kJ
kg

)



Chapter 5

Mass and Energy Analysis of Control Volumes

Conservation of mass principle

min−mout = ∆msystem and ṁin− ṁoud =
dmsystem

dt

Mass flow rate
ṁ = ρVA

Volume flow rate
V̇ =VA =

ṁ
ρ

The total energy of a flowing fluid

θ = h+ ke+ pe = h+
V 2

2
+gz

The general mass and energy balances for any system undergoing any process can be expressed as

Ein−Eout︸ ︷︷ ︸
Net energy transfer by heat,work, and mass

= ∆Esystem︸ ︷︷ ︸
Changes in internal, kinetic, potential, etc., energies

It can also be expressed in the rate form as

Ėin− Ėout︸ ︷︷ ︸
Rate of net energy transfer by heat,work, and mass

=
∆Esystem

dt︸ ︷︷ ︸
Rate of changes in internal, kinetic, potential, etc., energies

Conservation of mass and energy equations for steady-flow processes

∑
in

ṁ = ∑
out

ṁ

Q̇−Ẇ = ∑
out

ṁ
(

h+
V 2

2
+gz

)
︸ ︷︷ ︸

for each exit

−∑
in

ṁ
(

h+
V 2

2
+gz

)
︸ ︷︷ ︸

for each inlet

For single-stream (one-inlet-one-exit) sytems they simplify to

ṁ1 = ṁ2→ 1
v1

V1A1 =
1
v2

V2A2

Q̇−Ẇ = ṁ
[
h2−h1 +

V 2
2 −V 2

1
2 +g(z2− z1)

]
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When kinetic and potential energy changes associated with the control volume and the fluid streams
are negligible, the mass and energy balance relations for a uniform-flow system are expressed as

min−mout = ∆msystem

Q−W = ∑
out

mh−∑
in

mh+(m2u2−m1u1)system



Chapter 6

The Second Law of Thermodynamics

The thermal efficiency of a heat engine

ηth =
Wnet,out

QH
= 1− QL

QH

Coefficient of performance

COPR = QL
Wnet,in

= 1
QH
QL
−1

COPHP = QH
Wnet,in

= 1
1− QL

QH

Thermodynamic temperature scale related to the heat transfers between a reversible device and the
high- and low-temperature reservoirs (

QH

QL

)
rev

=
TH

TH

Thermal efficiency of a Carnot heat engine, as well as all other reversible heat engines

ηth,rev = 1− TL

TH

Coefficient of performance of reversible refrigerators and heat pumps

COPR,rev =
1

TH
TL
−1

and

COPHP,rev =
1

1− TL
TH
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Chapter 7

Entropy

Definition of entropy

dS =

(
dQ
T

)
int,rev

For the special case of an internally reversible, isothermal process, this gives

∆S =
Q
T0

Increase of entropy principle
Sgen ≥ 0

The entropy change and isentropic relations for a process with pure substances

Any process: ∆s = s2− s1

Isentropic process: s2 = s1

The entropy change and isentropic relations for a process with incompressible substances

Any process: s2− s1 = cavg ln T2
T1

Isentropic process: T2 = T1

The entropy change and isentropic relations for a process with ideal gases with constant specific
heats (approximate treatment)

Any process: s2− s1 = cv,avg ln T2
T1
+R ln v2

v1

s2− s1 = cP,avg ln T2
T1
+R ln P2

P1

Isentropic process:
(

T2
T1

)
s=constant

=
(

v1
v2

)k−1

(
T2
T1

)
s=constant

=
(

P1
P2

) k−1
k

(
P2
P1

)
s=constant

=
(

v1
v2

)k
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The entropy change and isentropic relations for a process with ideal gases with variable specific heats
(exact treatment)

Any process: s2− s1 = s◦2− s◦1−R ln P2
P1

Isentropic process: s◦2 = s◦1 +R ln P2
P1(

P2
P1

)
s=constant

= Pr2
Pr1(

v2
v1

)
s=constant

= vr2
vr1

Steady flow work for a reversible process

wrev =−
2∫

1

vdP−∆ke−∆pe

For incompressible substances it simplifies to

wrev =−v(P2−P1)−∆ke−∆pe

The reversible work inputs to a compressor compressing an ideal gas from T1, P1 to P2 in an isentropic,
polytropic or isothermal manner

Isentropic: wcomp,in =
kR(T2−T1)

k−1 = kRT1
k−1

[(
P2
P1

) k−1
k −1

]
Polytropic: wcomp,in =

nR(T2−T1)
n−1 = nRT1

n−1

[(
P2
P1

) n−1
n −1

]
Isothermal: wcomp,in = RT ln P2

P1

Isentropic or adiabatic efficiency for turbines, compressors and nozzles

ηT = Actual turbine work
Isentropic turbine work = wa

ws
∼= h1−h2a

h1−h2s

ηC = Isentropic compressor work
Actual compressor work = ws

wa
∼= h2s−h1

h2a−h1

ηN = Actual KE at nozzle exit
Isentropic KE at nozzle exit =

V 2
2a

V 2
2s

∼= h1−h2a
h1−h2s

The entropy balance for any system undergoing any process can be expressed in the general form
as

Sin−Sout︸ ︷︷ ︸
Net entropy transfer by heat and mass

+ Sgen︸︷︷︸
Entropy generation

= ∆Ssystem︸ ︷︷ ︸
Change in entropy

or, in rate form as

Ṡin− Ṡout︸ ︷︷ ︸
Rate of net entropy transfer by heat and mass

+ Ṡgen︸︷︷︸
Rate of entropy generation

=
dSsystem

dt︸ ︷︷ ︸
Rate of change in entropy



For a general stead-flow process it simplifies to

Ṡgen = ∑ ṁese−∑ ṁisi−∑
Q̇k

Tk



Chapter 8

Exergy: A Measure of Work Potentional

Not mandatory for the exam
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Chapter 9

Gas Power Cycles

Thermal efficiency of the Carnot cycle

ηth,Carnot = 1− TL

TH

In reciprocating engines, the compression ratio r and the mean effective pressure MEP are defined
as

r = Vmax
Vmin

= VBDC
VT DC

MEP = wnet
vmax−vmin

The thermal efficiency of the ideal Otto cycle (spark-ignition reciprocating engines) under cold-air-
standard assumptions is

ηth,Otto = 1− 1
rk−1

The thermal efficiency of the ideal Diesel cycle (compression-ignition reciprocating engines) under
cold-air-standard assumptions is

ηth,Diesel = 1− 1
rk−1

[
rk

c−1
k(rc−1)

]
The thermal efficiency of the ideal Brayton cycle (modern gas-turbine engines) under cold-air-
standard assumptions is

ηth,Brayton = 1− 1

r(k−1)/k
p

The deviation of the actual compressor and the turbine from the idealized isentropic ones can be
accurately accounted for by utilizing their isentropic efficiencies, defined as

ηC = ws
wa
∼= h2s−h1

h2a−h1

and

ηT = wa
ws
∼= h3−h4a

h3−h4S

Where states 1 and 3 are the inlet states, 2a and 4a are the actual exit states, and 2s and 4s are the
isentropic exit states.
Effectiveness (the extent to which a regenerator approaches an ideal regenerator)

ε =
qregen,act

qregen,max
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Under cold-air-standard assumptions, the thermal efficiency of an ideal Brayton cycle with regenera-
tion becomes

ηth,regen = 1−
(

T1

T3

)
(rP)

k−1
k

The net thrust devoloped by the ideal jet-propulsion cycle

F = ṁ(Vexit −Vinlet)

Propulsive power
ẆP = ṁ(Vexit −Vinlet)Vaircra f t

Propulsive efficiency

ηP =
Propulsive power
Energy input rate

=
ẆP

Q̇in

For an ideal cycle that involves heat transfer only with a source at TH and a sink at TL, the exergy
destruction is

xdest = T0

(
qout

TL
− qin

TH

)
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