Chapter 1

Introduction and basic concepts

Newton’s second law

Weight

Density

Specific volume

Specific weight

Kelvin to Celcius

Rankine to Fahrenheit

1J=1N-m
m kg
=7 (i)

\% 1

) SR

m  p

N
Ys=pD 8 <3>
m

T(K) = T(°C) +273.15 — AT(K) = AT (°C)

T(R) = T(°F) +459.67 — AT (R) = AT (°F)

(R) = 1.8T(K)
T(°F) =1.8T(°C)+32
1Pa=12%

1bar =10° Pa = 0.1 MPa = 100 kPa

Absolute, gage and vacuum pressure

Pgage = Pups — Pum
Poac = Patm — Pups



The pressure at depth £ from the free surface is
P=PFPyn+pgh or Py =pgh

Relation for the variation of pressure with elevation

@ = —pg

2
AP:PZ—Plz—fpgdz
1

The atmospheric pressure is measured by a barometer and is given by

Pum = Pgh




Chapter 2

Energy, Energy Transfer and General Energy
Analysis

The total energy of a system on a unit mass basis

Kinetic Energy

Kinetic Energy on a unit mass basis

Potentional Energy
PE = mgz (kJ)

Potentional Energy on a unit mass basis

kJ
= —_—
pe =8z kg

VZ
E:U—i-KE—i-PE:U—i-m? +mgz

Total Energy of a system

Total Energy of a system on a unit mass basis
2

14
e:u—{—ke+pe:u+7+gz

Mass flow rate

. k
i = pV = pAVg (f)

Energy flow rate

) kJ
E = ne (S or kW)



Mechanical Energy of a flowing fluid on a unit mass basis

V2

P
€mech = E""?"’_gz

Mechanical Energy of a flowing fluid expressed in rate form

. , (P V?
Emech:memech:m E"i'?"i'gz

Mechanical Energy change of a fluid during incompressible flow

B V2_y2
Aemech _ Psz| 2 5 1 g(ZZ Zl) (lﬁg)
And

- . . [ P,—P
AEmech = Mepech = M ( 2p L+

0 (“)
q_m kg

Amount of heat transfer duringa process

2 2
%Jrg(zz—m)) (kW)

Heat transfer per unit mass of a system

o
Q= [odt  (KJ)
51
When'Q remains constant

Q=0A  (kJ)

w—W kJ
m kg

The total volume change during a process between states 1 and 2

Work done per unit mass of a system

2
/dV:Vz—Vl =AV
1
The total work done during process 1-2
2
/ SW=Ws>  (NotAW)
1

Electrical work (where N is the amount of coulombs and V is a potentional difference)

W.=VN



Electrical work expressed in rate form (Electrical Power)
W,=vI (W)

Electrical work done during time interval At
2
W, = / Vide (k)
1

Work done by a constant force
W =Fs (kJ)

Work done by a not constant force
2
W= / Fds (k)
1

Torque

T
T=Fr—F=—
p

This force acts through a distance s, which is related to the radius r by
s=(2zr)n

Shaft Work
T
Wa = BS.= (—) (2mrn) = 2@nT (kJ)
r

Power transmitted through the shaft
Wy, =2mnT (kW)
Spring Work
6VVspring = Fdx
Total spring work
1

Wspring N zk(x% —X%) (k‘])

Work associated with the expansion or contraction of a solid bar

2

2
Welastic = /FdX: /GnAdx (k.])
1 1

Work associated with the stretching of a film (also called surface tension work)

2

Wvurface - /G_;Adx (kJ)
1



Energy balance
Ein — Eoy = AEsystem

The change in the total energy of a system during a process (in the absence of electric, magnetic and
surface tension effects)

AE = AU + AKE + APE
Where
AU =m(uz —uy)
AKE = Im(V} —V})
APE = mg(z, —z1)

Energy balance more explicitly

Ei - Eout = (Qm - Qout) + (VVm - Wout) + (Emass,in - Emass,out) - AEsystem
Energy balance for any system undergoing any kind of process

Ein - Eout - AEsystem (k])

Or in the rate form

7 7 dEystem
Ein — Eouy = dt (kW)

For constant rates, the total quantities during a time interval Az are related to the quantities per unit
time as

Q=0Ar  (kJ)
W=WAr (kJ)
AE=EA (kJ)

Energy balance on a unit mass basis

kJ )
€in— €our = Ae pr—
mn out system <kg

Energy balance in differential form
OE;, — 6Ey,; = dEsystem or Oejn—O0eyy = desystem
The Energy balance for a cycle

Wnet,out = Qnet,in or Wnet,nut = Qnet,in

Performance or efficiency

Desiredout put
Per formance = ——————
Requiredinput

Combustion efficiency

0 Amount of heat released during combustion
Necombustion = Hiv =

Heating value of the fuel burned



Mechanical efficiency

o Emech,out -1 Emech,l()ss
Nmech = ——— = 1———

Emech,in Emech,in

Pump efficiency

AEmeclft,fluioi - Wpump,u

npump Wsha ft,in Wpump
Turbine efficiency
n o Wshaft,out . VVturbine
turbine |AEmech,fluid | ‘/Vturbine,e
Motor efficiency
VVsha ft,out
Nmotor = Wi
elect,in
Generator efficiency
n o Welect,out
generator thaft,in

Combined efficiency of a pump-motor combination

n =1 n _ Wpump7u o AEmecILfluid
pump—motor — !lpumpllmotor = T3 = :
Welect,in Welect,in

Combined efficiency of a turbine-generator combination

Wel ect,out Wel ect,out

Nturbine—generator = MNrturbine Ngenerator =

VVturb,in N |AEmech,fluid‘

Rate of heat conduction

: AT
Ocond = ktAE
In the limiting case of Ax — 0 (Fouriers law)
X dT
= —kA— w
Qcond t y ( )

Rate of heat transfer by convection
Qconv = hA(Ts - Tf) (W)

Maximum rate of radiation
- 4
Qemit,max - GATS

Radiation emitted by a real surface
Qemit — 86AT;~4 (W)
Rate at which a surface absorbs radiation

Qabs = aQincident (W)



Net rate of radiation heat transfer

Oraa = €CA(TS =T (W)




Chapter 3
Properties of Pure Substances

The quality x as the ratio of the mass of vapor to the total mass of the mixture (for saturated mixtures
only)

__ Myapor
Myotal

Where

Myotal = Miiguid + Myapor = My + Mg
The total volume in a tank containing a saturated liquid-vapor mixture is

V=V,+V,
V=mv = myvae = mpvy+mgv,
My = My — Mg — MyVayg = (M — Mg) vy +mgv,
Dividing my m; yields

VG < X)v ¢ + XV,

Since x = mg/m,. This relation can also be expressed as

A&
Vave = V£ + XV —
avg f fe kg
Where vye = v — vg. Solving for quality we obtain
y Vavg — Vf
Vfg

The analysis given above can be repeated for internal energy and enthalpy with the following results

Ugyg = UF +XUfg (%)

hag =hy+xh ()
All the results are of the same format, and they can be summarized in a single equation as

Yavg = Yf + XYfg

Where y is v, u or h.



Ideal-gas Equation of State

T
P=R|—)—=Pv=RT
v

The gasconstant R is determinded from

R, ( kJ kPa.m3>

R="
M ke K kg K

Where R, is the universal gas constant The mass of a system
m=MN (kg)
The ideal-gas Equation of State can be written in several different forms

V=mv — PV =mRT
mR = (MN)R=NR, — PV =NR,T
V=Nv — Pv—R,T

The properties of an ideal gas at two different states are related to each other by

PV BV,
nnoh
Compressibility factor
e
Z= T
or
Pv=ZRT

Gases behave differently at a given temperature and pressure, but they behave very much the same at
temperatures and pressure normalized with respect to their critical temperatures and pressures. The
normalization is done as

P T
Pr=— d Tr=—
VD AT
Pseudeo-reduced specific volume
VR = Vactual
RT.. /P

Van der Waals Equation of State
a
P 7) _b)=RT
(P+5) v=0)

The determination of the two constants appearing in this equation is based on the observation that
the critical isotherm on a P — v diagram has a horizontal inflection point of the cricital point. Thus,
the first and the second derivatives of P with respect to v at the critical point must be zero. That is

oP 2’P
<> =0 and (2) =0
v T=T..=const dv T=T.,=const



By performing the differentiations and eliminating v, the constants a and b are determined to be

27R2T? RT,
= £ and b= —
64P,, 8P,

Beattie-Bridgeman Equation of State

where
A=A¢(1-%) and B=B,(1-2)

Benedict-Webb-Rubin Equation of State

R, T C\ 1 bR,T—a a«a c AN
p="% +<BORL,T—AO—T2>#+V3+V6+V3TZ(1+ )evZ

Virial Equation of State

Vapor Pressure



Chapter 4
Energy Analysis of Closed Systems

Boundary work
0W, = Fds = PAds = Pdv

The total boundary work

2
Wy = / PAV  (kJ)
1

The total area under the process curve1-2

2

2
AreazAz/dAz/pdV
1 1

Pressure for a polytropic process

P=Ccv™"
Work done during a polytropic process
; ’ AR PV, — PV,
Wh:/pdV:/CV_ndV:C2 4 =
—n+1 1—n
1

1

Since C = PV{' = P,V;'. For an'ideal gas (PV = mRT), this equation can also be written as

. mR(T2 R Tl)

1%
b 1—n

n#1 (kJ)

For the special case of n = 1 the boundary work becomes

2

2
v
Wy, = /pdV = /cv*ldv —PVIn (V2>
1
1

1

Energy balance for a closed system undergoing a cycle

VVnet,out = Qnet,in or Wnet,out = Qnet,in (fOI‘ a CYCIC)

12



Various forms of the first-law relation for closed systems

General Q—W =AE
Stationary systems Q—W =AU
Per unitmass g—w = Ae

Differential form &g — 0w = de

Specific heat at constant volume (= the change in internal energy with temperature at constant

volume)
o Q kJ or kJ
Y\er ), kg-°C  kg-°K

Specific heat at constant pressure (= the change in enthalpy with temperature at constant pressure)

o _(on Kok
P=\esr ), kg-°C kg °K

Using the definition of enthalpy and the equation of state of an ideal gas, we have

h=u+PV

Py =RT }h:’”RT

The differential changes in the internal energy and enthalpy of an ideal gas

du=c,(T)dT
and
dh = CP(T)

the change in internal energy or enthalpy for an ideal gas during a process from state 1 to state 2 is
determined by integreting these equations

2
Au=uy—u; = [c,(T)dT (%)
1

and

2
Ah =y —hy = [ ep(T)dT (g)
1

A special relationship between Cp and C, for ideal gasses can be obtained by differentiating the
relation h = r+ RT, which yields
dh=du+RdT

Replacing dh by cpdT and du by c,dT and dividing the resulting expression by d7', we obtain

kJ
—=c¢,+R —
cp=c¢Cy+ (kg-K)

Lo cr

Cy

Specific heat ratio



For incompressible substances (solids and liquids)
cp=C,=c
The change in internal energy of incompressible substances between states 1 and states 2 is obtained

by

2
kJ
Au=uy —u :/c(T)dT%cavg(Tz—Tl) (E)
1

The change in enthalpy of incompressible substances between states 1 and states 2 is obtained by

Ah = Au+vAP <kJ>

kg




Chapter 5
Mass and Energy Analysis of Control Volumes

Conservation of mass principle

d Mgystem
dt

Miy — Moyt = Amsyslem and 7y, — itgug =
Mass flow rate
= pVA

Volume flow rate )
v=va=2
P
The total energy of a flowing fluid
VZ
0 :h+ke+pe:h+? +8z

The general mass and energy-balances for any system undergoing any process can be expressed as

Ein — Eour 4 AEsystem
—_——

Net energy transfer by heat,work, and mass Changes in internal, Kinetic, potential, etc., energies

It can also be expressed in the rate form as

AEsystem
dt

Rate of changes in internal, kinetic, potential, etc., energies

Ein - Eout N
———

Rate of net energy transfer by heat,work, and mass

Conservation of mass and energy equations for steady-flow processes

Yriv= Y i

out

L V2 v?
O-W= Zm(h++gz> —Ym <h++gz>
out 2 in 2

for each exit for each inlet
For single-stream (one-inlet-one-exit) sytems they simplify to

. . 1 1
mp =mp — WVIAI = EVZAZ

. . 2_y2
O—W=m hz—h1+V22V‘ —i—g(Zz—Zl)}

15



When kinetic and potential energy changes associated with the control volume and the fluid streams
are negligible, the mass and energy balance relations for a uniform-flow system are expressed as

My — Moy = Amsystem
QO-—-W=Ymh—Ymh+ (mzuz —mpuy )system

out in




Chapter 6
The Second Law of Thermodynamics

The thermal efficiency of a heat engine

Nen = Wnet,out -1 QL
th = =l-=
On On
Coefficient of performance
COPR - WnQefiiz = QiHl_l
, o
COFygp = Wg:m N IQL
: _ On

Thermodynamic temperature scale related to the heat transfers between a reversible device and the
high- and low-temperature reservoirs
N
OF 4. O

Thermal efficiency of a Carnot heat engine, as well as all other reversible heat engines

1,
Nehrev = 1% TH

Coefficient of performance of reversible refrigerators and heat pumps

1
COPR,rev = Ty .
T
and

COPHP,rev =1

77,
=77

17



Chapter 7
Entropy

Definition of entropy

- (9
T int,rev

For the special case of an internally reversible, isothermal process, this gives

as =<
Ty

Increase of entropy principle
Sgen > 0

The entropy change and isentropic relations for a process with pure substances

Any process: As =55 — 51

Isentropic process: S22 = 8]
The entropy change and isentropic relations for a process with incompressible substances

. N )
Any process: §2—S1 = Cavgln 7

Isentropic process: L=T

The entropy change and isentropic relations for a process with ideal gases with constant specific
heats (approximate treatment)

. _ o) V2
Any process: §2 =81 = Cpavgln 7t Rln "

T; P:
§2—851 = Cpﬂvglnﬁ +Rlnﬁ

k—1
Isentropic process: <%) = (L'>
1 _ V2
s=constant
k=1
D)= (8)
T s=constant B

Pt ) s—constant V2

18



The entropy change and isentropic relations for a process with ideal gases with variable specific heats
(exact treatment)

. __ &0 o P
Any process: 52— 81 =55 — 8] —Rln?1

: . o __ O P
Isentropic process: s5 =157 +RIn 7

(&) _ P
1/ s=constant Pri

(&) _w
1/ s=constant vrl

Steady flow work for a reversible process

2
Wiey = — /vdP— Ake — Ape
1

For incompressible substances it simplifies.to
Wrep = —V(P, — P;) — Ake — Ape

The reversible work inputs to a compressor compressing an ideal gas from 77, P; to P in an isentropic,
polytropic or isothermal manner

k=1
. - T
Isentropic: Wiknp T kR(kTZ_—]TI) ’ % [(%) _ 1}
(12=1)) o
£ nR(T>—T; RT; P n
Polytropic:  Weompjn = =31 = 31 [(Po - 1}
Isothermal: Weomp,in = RT In %

Isentropic or adiabatic efficiency for turbines, compressors and nozzles

__Actual turbine work = Wy ~ hi—hy,
T’ I = 5 = 2L
T Isentropic turbine work ws — hy—hyg

__Isentropic compressor work _ wy ~v hos—hy
Ne = Actual compressor work  — w, T hy,—h

Actual KE at nozzle exit __ Lz%l ~ h1—hy,
Ny = Isentropic KE at nozzle exit ~ V2 ~ hi—hy

The entropy balance for any system undergoing any process can be expressed in the general form
as

Sin — Sour + Sgen = ASsystem
—_———
Net entropy transfer by heat and mass  Entropy generation ~ Change in entropy
or, in rate form as
. . . das,,
system
Sin - Sout + Sgen =
———— dt

Rate of net entropy transfer by heat and mass  Rate of entropy generation X
Rate of change in entropy



For a general stead-flow process it simplifies to

Sgen = Zmese - Zmisi - QT:




Chapter 8
Exergy: A Measure of Work Potentional

Not mandatory for the exam

21



Chapter 9
Gas Power Cycles

Thermal efficiency of the Carnot cycle

1

Nth.Carnot = 1 T7H

In reciprocating engines, the compression ratio » and the mean effective pressure MEP are defined
as

r—= Vmax - VBDC
Vinin Vroc

MEP = Vma‘:ie:’min
The thermal efficiency of the ideal Otto cycle (spark-ignition reciprocating engines) under cold-air-

standard assumptions is
n =1 S
th,0tto .4}

The thermal efficiency of the ideal Diesel cycle (compression-ignition reciprocating engines) under
cold-air-standard assumptions is

1 [ -1
nth,Diesel =1- r—k_il k(l",_« i 1)

The thermal efficiency of the ideal Brayton cycle (modern gas-turbine engines) under cold-air-

standard assumptions is
1
Nih,Brayton = 1 — =
'p
The deviation of the actual compressor and the turbine from the idealized isentropic ones can be
accurately accounted for by utilizing their isentropic efficiencies, defined as

Ws ~ hys—hy

nc = Wa h2a7hl
and
_ Wa ~ h3a—hay
NT =50 = hy—hs
Where states 1 and 3 are the inlet states, 2a and 4a are the actual exit states, and 2s and 4s are the
isentropic exit states.
Effectiveness (the extent to which a regenerator approaches an ideal regenerator)

gre en,act
£ = 8L

Gregen,max

22



Under cold-air-standard assumptions, the thermal efficiency of an ideal Brayton cycle with regenera-

tion becomes
n k=1
Nth,regen = 1- (T ) (rP) k
3

The net thrust devoloped by the ideal jet-propulsion cycle
F= m(Vexit - Vinlet)
Propulsive power
WP - m(vexit - Vinlet)vaircraft

Propulsive efficiency
_ Propulsive power  Wp
e = Energy input rate  Q;,

For an ideal cycle that involves heat transfer only with a source at 7y and a sink at 77, the exergy

destruction is
qout 4in
Xgeost =11 - —
dest O( TL TH)
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