Here g_e is the acceleration due to gravity at the earth's surface. Note that the choice of g_e is arbitrary. The advantage is that in all common systems (fps, cgs, SI etc.) the unit of specific impulse (I_{sp}) is the same 'seconds'.

Thrust:

$$T = \dot{m}_e U_e + A_e \left(p_e - p_a \right) = \dot{m}_e U_{eq}$$
 where $U_{eq} = U_e + \left(\frac{p_e - p_a}{\dot{m}} \right) A_e$
$$\frac{\mathbf{Maximum Thrust:}}{dT = \dot{m}_e dU_e + dA_e \left(p_e - p_a \right) + A_e dp_e = 0}$$

$$A_e + dA_e$$

$$P_e + dP_e$$

$$U_e + dU_e$$
 differential element

Figure 2 A differential element at the nozzle exit

momentum equation for a differential element (Fig.2) at exit gives

$$\begin{split} &(\rho_e + d\rho_e)(U_e + dU_e)^2(A_e + dA_e) - \rho_e U_e^2 A_e = \sum F_x = A_e P_e - (A_e + dA_e)(P_e + dP_e) + P_e dA_e \\ &\rho_e U_e A_e dU_e + A_e dp_e = m_e dU_e + A_e dp_e = 0 \\ &dT = dA_e (p_e - p_a) = 0 \text{ , or } p_e = p_a \\ &d^2 T = d^2 A_e (p_e - p_a) + dA_e dp_e \end{split}$$

Now $dA_e dp_e < 0$ as $dA_e > 0$ and $dp_e < 0$

Therefore, $p_e = p_a$ refers to optimum expansion. Under-expansion $p_e > p_a$ implies additional force is remaining unused and over-expansion $p_e < p_a$ can be noted as beginning of negative contribution to thrust generation

Figure 3. Schematic showing optimal expansion in a CD nozzle.

Exhaust gas velocity (U_e) in terms of combustion chamber properties

Ideal analysis: one dimensional, steady state, isentropic flow. The gas is assumed to be a perfect gas with constant properties

Figure 4 A schematic showing control volume to relate exhaust velocity (U_e) to thermodynamic properties in the combustion chamber.

Conservation of energy

$$\frac{\partial}{\partial t} \iiint_{V} \left(e_{0} + \frac{U^{2}}{2} \right) \rho dV + \iiint_{S} \left(h + \frac{U^{2}}{2} \right) \rho \vec{U} \cdot d\vec{S} = \delta \dot{Q} - \delta \dot{W}'$$

$$h_{c} + \frac{V_{c1}^{2}}{2} = h_{e} + \frac{U_{e}^{2}}{2}$$

$$2C_{p}(T_{c} - T_{e}) = U_{e}^{2} - V_{c}^{2} \qquad ----(1)$$

$$C_{p} - C_{v} = R, \quad \frac{C_{p}}{C_{v}} = \gamma \quad \text{and} \quad R = \frac{R_{u}}{M_{W}}$$

eliminating C_v we get $C_p = R \frac{\gamma}{\gamma - 1} = \frac{R_u}{M_W} \times \frac{\gamma}{\gamma - 1}$

for isentropic flow the pressure temperature relationship follows

$$\frac{T_e}{T_c} = \left(\frac{p_e}{p_c}\right)^{\frac{r-1}{r}}, \text{ or } T_c - T_e = T_c \left[1 - \left(\frac{p_e}{p_c}\right)^{\frac{r-1}{r}}\right] \qquad ----(2)$$

Substituting for $(T_c - T_e)$ in (1)

$$U_e = \left(\frac{T_c}{M_W} \times \frac{2R_u \gamma}{\gamma - 1} \left[1 - \left(\frac{p_e}{p_c}\right)^{\frac{\gamma - 1}{\gamma}} \right] + V_c^2 \right)^{1/2}$$
(3)

Now

 $V_{\scriptscriptstyle c}=$ gas flow velocity in combustion chamber is very small and hence neglected

 p_e = outside atmospheric pressure $<< p_c \Rightarrow \frac{p_e}{p_e}$ is very small.

$$\therefore U_e = \text{const} \times \sqrt{\frac{T_c}{M_W}}$$
 (4)

Note: Exhaust velocity, U_e and thus the specific impulse, I_{sp} is directly proportional to combustion temperature, T_c and inversely proportional to the molecular weight, M_W of combustion gases \Rightarrow a criterion for selecting propellant

Specific Impulse (I_{sp}) of representative space propulsion system

Engine type	Working fluid	Specific impulse
Chemical (liquid)		
Monopropellant	Hydrogen peroxide-	110 - 140
	hydrazine	220 - 245
Bipropellant	O ₂ -H ₂	440 - 480
	O ₂ -hydrocarbon	340-380
	N ₂ O ₄ -Monomethyl hydrazine	300-340
Chemical (solid)	Fuel and oxidizer	260-300
Nuclear	H_2	600 - 1000
Solar heating	$\overline{\mathrm{H}_{2}}$	400 - 800
Arc jet	H_2^-	400-2000
Cold gas	$\overline{N_2}$	50-60
Ion	Cesium	5000-25,000

2. ROCKET DYNAMICS

Figure 1

Consider an accelerating rocket vehicle (figure. 1). Let M be the mass of the vehicle at time 't' and 'V' its velocity. Over a short time interval Δt ' the rocket ejects mass ' Δm ' with velocity 'v' and the vehicle acquires velocity $V + \Delta V$ '.

The change in momentum of rocket: $(M - \Delta m)(V + \Delta V) - (M - \Delta m)V$

The change in momentum of mass $\Delta m : \Delta m(v) - \Delta m(V)$

The change in momentum of the system: $M\Delta V - \Delta m(V-v)$

The net external forces on the system: $A_e(p_e - p_a) - D - Mg_e \sin \theta$

$$M\Delta V - \Delta m(V - v) = [A_e(p_e - p_a) - D - Mg_e \sin \theta] \Delta t$$

$$M\Delta V - \Delta m(V - v) = \left[A_e(p_e - p_a) - D + Mg_e \sin\theta\right] \Delta t$$

$$M \underset{\Delta t \to 0}{Lt} \frac{\Delta V}{\Delta t} = \left[\underbrace{Lt}_{\Delta t \to 0} \frac{\Delta m}{\Delta t} (V - v) + A_e(p_e - p_a) - D - Mg_e \sin\theta\right]$$

$$M\frac{dV}{dt} = \left[\dot{m}(V-V) + A_e(p_e - p_a) - D - Mg_e \sin\theta\right]$$
 where $Lt\frac{\Delta m}{\Delta t} = \dot{m}$

Now
$$T = \dot{m}(V - v) + A_e(p_e - p_a) = \dot{m}U_e + A_e(p_e - p_a) = \dot{m}U_{eq}$$

Rearranging we get general Equation of Motion for a rocket vehicle

Vehicle accleation,
$$a = \frac{dV}{dt} = \frac{T}{M} - \frac{D}{M} - g_e \sin \theta$$

Typically for a launch vehicle, launched from the earth, the thrust to weight

ratio, $\left(\frac{T}{Mg_e}\right)$, is between 1.5 to 2 to ensure reasonable acceleration.

Case I (Neglecting the atmospheric drag and the effect of gravity)

$$\frac{dV}{dt} = \frac{T}{M} = \frac{\dot{m}[(V-v) + A_e(p_e - p_a)/\dot{m}]}{M} = -\frac{U_{eq}}{M}\frac{dM}{dt}$$

$$dV = -U_{eq} \frac{dM}{M}$$

Integrating over time '0' to 't'

$$\Delta V = \int_{V_0}^{V_F} dV = -U_{eq} \int_{M_0}^{M} \frac{dM}{M} = U_{eq} \ln \frac{M_0}{M}$$

We get Rocket Equation (Konstantin Tsiolkovsky's Rocket Equation)

$$\Delta V_{ideal} = U_{eq} \ell n \frac{M_0}{M} = I_{sp} g_e \ell n \frac{M_0}{M} \qquad ------ (1)$$

Here: M_0 = initial mass of the vehicle,

M = instantaneous mass of the Vehicle a time 't'.

Total velocity increment over the acceleration phase lasting for time t_b

$$\Delta V_{\text{max}} = I_{sp} g_e \ell n \frac{M_0}{M_B}$$

where $M_{\scriptscriptstyle B}$ is the mass of the vehicle at burnout

Plotting ΔV_{max} vs (M_o/M) for different values of I_{sp} using eqn. (2), the following points can be observed from figure 2.

Figure 2